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Representing numbers by quadratic forms

DEFINITION: Let q be a quadratic form on Rn. We say that α is repre-
sented by q if q(v) = λ for some v ∈ Zn.

THEOREM: (Lagrange)
Any positive integer is represented by the form x2 + y2 + z2 + t2.

THEOREM: (290-theorem; Bhargava, Hanke)
Let q be a quadratic form with integer coefficients, representing 1, 2, 3, 5,
6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58,
93, 110, 145, 203, 290. Then q represents all positive integers.

DEFINITION: A quadratic form q is irrational if q is not proportional to a
form with rational coefficients.

THEOREM: (Oppenheim conjecture, 1929; proven by G. Margulis,
1987)
Let q be an irrational quadratic form on Rn+m, n,m > 0, n + m > 2, and S

the set of numbers represented by q. Then S is dense in R.

The proof of this result is based on ergodic theory.
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Haar measure

DEFINITION: (Left) Haar measure on a locally compact topological group

G is a left-invariant, locally finite Borel measure.

THEOREM: Haar measure exists on each locally compact topological

group, and is unique up to a constant multiplier.

REMARK: In Lecture, 13, we have seen this for Lie groups and measures

associated with differential forms.

REMARK: Since the left action on a group commutes with the right action,

right translations map any left-invariant measure to a left-invariant. This

means that the left Haar measure is multiplied by a constant under a

right translation.
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Unimodular groups

DEFINITION: A group is called unimodular if the left Haar measure is

right-invariant.

REMARK: In other words, a group is unimodular if the left Haar measure

is equal to the right Haar measure.

EXAMPLE: The group of affine transforms on R or on Rn is not unimodular

(prove it)

DEFINITION: A character of a group is a homomorphism to the multi-

plicative group C∗ or R∗ or Q∗.

REMARK: Since the right action multiplies the Haar measure by a

character χ, any group G which satisfies G = [G,G] is unimodular.
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Lattices in Lie groups

DEFINITION: Let Γ ⊂ G be a discrete subgroup in a Lie group, and π :

G−→G/Γ the corresponding covering map (we take the quotient G/Γ with

respect to the left action). Since π is locally a diffeomorphism, and Γ preserves

the measure, there is a measure µ on G/Γ such that for all U ⊂ G with

π : U −→ π(U) a diffeomorphism, the restriction π|U preserves the measure.

This measure is called Haar measure on G/Γ.

DEFINITION: A discrete subgroup Γ ⊂ G is called a lattice if the Haar

measure of G/Γ is finite.

CLAIM: Let G be a Lie group which contains a lattice Γ. Then G is

unimodular.

Proof: Consider the right action Rg of G on G/Γ. Then R
g
∗(µ) = χ(g)µ,

where µ denotes the Haar measure. However, the volume of G/Γ has to stay

constant, because Rg is a diffeomorphism. This gives∫
G/Γ

µ =
∫
G/Γ

R
g
∗(µ) =

∫
G/Γ

χ(g)µ = χ(g)
∫
G/Γ

µ

and χ(g) = 1.
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Fundamental domain

DEFINITION: Let Γ be a discrete group acting on a space M with measure

properly discontinuously. The fundamental domain of this action is a subset

D ⊂M intersecting each orbit of Γ exacty once outside of measure 0.

REMARK: Clearly, a subgroup Γ ⊂ G is a lattice ⇔ its fundamental

domain in G has finite volume.

Fundamental domain of SL(2,Z) acting in the Poncaré upper half-plane.
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Fundamental domain (2)

Fundamental domain of SL(2,Z) acting in the Poncaré upper half-plane.

REMARK: From this picture it is easy to see that SL(2,Z) is a lattice

in SL(2,R). Indeed, the fundamental domain Ω of Γ := SL(2,Z) acting in

Poincare plane H2 = SL(2,R)/S1 has finite volume, because it is a triangle.

This implies that the fundamental domain of Γ in SL(2,R), which is fibered

over Ω with compact fiber S1, also has finite volume.
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Borel and Harish-Chandra theorem

DEFINITION: An algebraic group is a subgroup G ⊂ GL(n) defined by
polynomial equations.

REMARK: In fact, any connected Lie sugbroup G ⊂ GL(n,R) is a con-
nected component of an algebraic group. Moreover, any complex Lie
subgroup of GL(n,C) is algebraic.

DEFINITION: A rational algerbraic group G ⊂ GL(n,R) is a Lie subgroup
of GL(n,R) defined by polynomial equations with rational coefficients. We
denote by GZ (or GQ) the subgroup of G consisting of all integer (rational)
matrices. A rational character on G is a group homomorphism GQ −→ Q>0

into multiplicative group of positive rational numbers.

THEOREM: (Borel and Harish-Chandra)
Let G ⊂ GL(n,R) be a rational algebraic group which has no non-trivial
rational characters. Then GZ = G ∩ SL(n,Z) is a lattice on G.

REMARK: This is a non-trivial theorem, but we have proved it for G =
SL(2,R) already. It can be easily proven for (some) other groups by
constructing the fundamental domain explicitly.
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Jordan-Chevalley decomposition

DEFINITION: A matrix g ∈ GL(n) is called unipotent if all its eigenvalues

are equal 1, and semisimple if it is diagonalizable over C.

THEOREM: Let G ⊂ GL(n) be an algerbaic group. Then any g ∈ G has a

decomposition g = su, where s ∈ G is semisimple, u ∈ G is unipotent, and

s, u commute. Moreover, such decomposition is unique and functorial

under algebraic group homomorphisms.

DEFINITION: This decomposition is called the Jordan-Chevalley decom-

position.

REMARK: For G = GL(n), Jordan-Chevalley decomposition is the same

as the usual Jordan normal form.
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Groups generated by unipotents

DEFINITION: We say that an algebraic group G is generated by unipo-

tents if any element of G can be represented a product of unipotent elements.

REMARK: For each unipotent u ∈ G, and each g ∈ G, the element gug−1 is

also unipotent (indeed, both are exponents of a nilpotent matrix). Therefore,

the subgroup G′ ⊂ G generated by unipotents is normal.

COROLLARY: Let G be a simple algebraic group (such as SL(n), SO(n), Sp(n), ...)

containing a unipotent element. Then G is generated by unipotents.

Proof: Since the map x−→ gxg−1 preserves unipotents, the subgroup H ⊂ G
generated by unipotents is normal. Then H = G because G is simple. .

EXAMPLE: A compact Lie group has no non-trivial unipotents, because

each element of a compact group is semisimple.
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C. Moore theorem

THEOREM: (C. Moore, 1966) Let Γ ⊂ G be lattice in a simple algebraic

group, and H ⊂ G a non-compact subgroup. Then the action of H on G/Γ

is ergodic.

REMARK: This implies, in particular, that general orbits of H-action on

G/Γ, or of Γ-action on G/H, are dense.

COROLLARY: The group SL(n,Z) acts on SL(n,R)/H with dense or-

bits, for any non-compact Lie subgroup H ⊂ SL(n,R).
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Ergodic decomposition for G/Γ

Let Γ ⊂ G be lattice in an algebraic group and H ⊂ G a subgroup generated

by unipotents. Ratner measure classification theorem classifies the H-ergodic

measures on G/Γ.

DEFINITION: Let Γ ⊂ G be lattice in an algebraic group and S ⊂ G a

subgroup such that S ∩ Γ is a lattice in S. Denote by µ̃S the Haar measure

from S/Γ∩S, and let S/Γ∩S j−→ G/Γ be a natural embedding. An algebraic

measure on G/Γ is µS := L
g
∗j∗µ̃S, where g ∈ G and Lg is the left action of g.

THEOREM: (Ratner theorem on measure classification) Let Γ ⊂ G be a

lattice in an algebraic group and H ⊂ G a subgroup generated by unipotents.

Consider the minimal subgroup S ⊂ G such that S ∩ Γ is a lattice in S,

containing x−1Hx for some x ∈ G. Then µS = Lx∗j∗µ̃S is an H-ergodic

measure. Moreover, all H-ergodic measures are obtained this way.
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Ratner theorem on classification of orbits

THEOREM: Let H ⊂ G be a Lie subroup generated by unipotents, and

Γ ⊂ G an arithmetic lattice. Then the closure of any Γ-orbit in G/H is an

orbit of a Lie subgroup S ⊂ G, such that S ∩ Γ ⊂ S is a lattice.

COROLLARY: Let q be a quadratic form on Rm+n, of signature (m,n),

m,n > 0, m+ n > 2, G = SL(n+m), Γ = SL(m+ n,Z), and H = SO(q) ⊂ G.

Then an orbit H · e is dense in G/Γ for irrational q and closed for rational

q.

Proof. Step 1: Ratner theorem implies that H · x = Sx, where S is a minimal

Lie group containing xHx−1 and such that xSx−1 ∩ Γ is a lattice.

Step 2: It is not hard to see that if S ∩ Γ is a lattice, then S is rational.

Step 3: Any connected Lie subgroup of SL(n,R) containing H is equal to H

or to G: also not hard to check. Therefore, closed orbit of H correspond

to rational subgroups xHx−1 ⊂ G, and non-closed are dense.

Step 4: For q irrational, SO(q) is not rational, and H ∩ Γ is not a lattice.
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Proof of Oppenheim conjecture

THEOREM: (Oppenheim conjecture)

Let q be an irrational quadratic form on Rn+m if signature n,m > 0, n+m > 2,

and S the set of numbers represented by q. Then S is dense in R.

Proof. Step 1: Let G = SL(n+m), and H = SO+(q) ⊂ G. By the previous

Corollary, left orbit of H · e is dense in G/Γ. Clearly, this is equivalent to the

right orbit e · Γ being dense in the left quotient H\G.

Step 2: Consider the function Qe0 : H\G−→ R mapping g to q(g(e0)), where

e0 = (1,0,0, ...,0). Then Qe0(e · Γ) is the set of all numbers represented

by q.

Step 3: Since e · Γ is dense in H\G, the image Qe0(e · Γ) is dense in R.
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Marina Ratner (1938-2017)

Marina Ratner (1984).
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