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Measure-theoretic entropy

DEFINITION: Partition of a probability space (M, i) is a countable decom-
position M = [[V; onto a disjoint union of measurable set. Refinement of a
partition V = {V;} is a partition W, obtained by partition of some of V; into
subpartitions. In this case we write V < )W. Minimal common refinement
of partitions V = {V;}, W = {W;} is a partition VVW = {V; N W,}.

DEFINITION: Entropy of a partition V = {V;} is H,(V) 1= — >, u(V;) log(u(V;)).
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EXERCISE: The entropy of infinite partition can be infinite. Find a parti-
tion with infinite entropy.
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Entropy of a communication channel

Consider a communication channel which sends words, chosen randomly of
k letters which appear with probabilities pq,...,pr, With >, p. = 1. The en-
tropy of this channel is H(p1,...,pr) Mmeasures ‘“informational density” of
communication (C. Shannon).

It should satisfy the following natural conditions.

1. Let [ > k. The information density is clearly higher for p; = ... =
pr = 1/k than for ¢q1,...,qq = 1/l. Therefore, H(1/k,...,1/k) < H(1/l,...,1/l).

2. H should be continuous as a function of p;, and symmetric under
their permutations.

3. Suppose that we have replaced the first letter in the alphabeth
of k letters by [ letters, appearing with probabilities q1,...,q;. VWe have ob-
tained a communication channel with £ 4+ 1 — 1 letters, with probabilities

P141,---,P141, P2, - Pg- Then H(p1q1,...,p1q;, 02, -, Pr) = H(p1, -, p)+r1H (g1,
Clearly, H(p1,...,pr) = — Y. p; l0g p; satisfies these axioms. Indeed,
k l k [
— > pilogp; — > p1g;log(pig;) = — ) pilogp; —p1logps —p1 > gjlogg;.
1=2 j=1 i=2 j=1
It is possible to show that H(pq,...,pr) = — Y. p;logp; is the only function

which satisfies these axioms.
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C. Shannon, ‘“Mathematical theory of computation”, p. 10

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process. Can we define a quantity which
will measure, in some sense, how much information is “produced” by such a process, or better, at what rate
information is produced?

Suppose we have a set of possible events whose probabilities of occurrence are p;. p»,...,pn. These
probabilities are known but that is all we know concerning which event will occur. Can we find a measure
of how much “choice” is involved in the selection of the event or of how uncertain we are of the outcome?

If there is such a measure, say H(p1, pa,....pa), it is reasonable to require of it the following properties:

1. H should be continuous in the p;.

2. If all the p; are equal, p; = %, then H should be a monotonic increasing function of n. With equally
likely events there is more choice, or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original H should be the weighted sum
of the individual values of H. The meaning of this is illustrated in Fig. 6. At the left we have three

2
1/2 1/2 1/
1/3
2/3
e 1> 1/3
1/3™1/6

Fig. 6 — Decomposition of a choice from three possibilities.

possibilities p; = % Py = %, p3 = %. On the right we first choose between two possibilities each with

probability % and if the second occurs make another choice with probabilities % , % The final results
have the same probabilities as before. We require, in this special case, that

1 1 1y 11 1 21
H(3,3.5) =H(3:3) +3H(3.3).

The coefficient % is because this second choice only occurs half the time.
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Entropy of dynamical system

In this lecture, we consider only dynamical systems (M, u,T) with u proba-
bilistic and 1T' measure-preserving.

Given a partition V,M = [[V; we denote by T 1(V) the partition M =
T~ 1(V)).

DEFINITION: Let (M,u,T) be a dynamical system, and V,M = [[V; a
partition of M. Denote by V" the partition V' :=VVv T 1(WV)VvT2(V) V..V
T—"1T1 Entropy (M,u,T) of with respect to the partition V is h,(T,V) :=
limy+H, (V") Entropy of (M,u,T) is supremum of hu(T,V) taken over all
partitions V with finite entropy.

REMARK: Let V > W be a refinement of the partition W. Clearly, H,(V) >
H,(W). This implies h,(T,V) = h,(T,W).
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Entropy of dynamical system and iterations

REMARK: Clearly, \/j_ ST~I(Vk)y = vtk This gives

1
h,(VF, T) = Iimn;HM(V“"'k) = h,(V,T).

The last equation holds because ”mn#—k = 1.

COROLLARY: This implies h,(V,T) = 1h,(V",T™).
Proof: Indeed, /25t Vv = Vkn® | giving h, (V" T™) = limpL H, (V) = nh,(V, T)
(the last equatlon is implied by the previous remark). =

COROLLARY: For any (M, u,T), one has h,(T") = nh,(T).

Proof: Since V" is a refinement of V, one has H,(V") > H,(V). This gives
hu(T™) = supy H,(T",V) = supyn H,(T™, V") = nsupy H,(T,V) = nh,(T). »

COROLLARY: Let p = %Z?zl dz; be a sum of atomic measures. Since
T preserves u, T acts on the set {z1,...,zn} by permutations. Therefore
™' =1d, giving

1
hy(V, T) = h,(V¥,T) = am,d(vm,ir”!) = 0.
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Independent partitions

DEFINITION: Let V, W be finite partitions. We say that they are indepen-
dent if for all V; € V and W; € W, one has w(V; N Wj) = u(\/;)u(Wj).

REMARK: In probabilistic terms, this means that the events associated
with V; and W; are uncorrelated.

REMARK: Let V, W be independent partitions, with p1,...,p. measures of
V; and q1,...,q; measures of WW. Then

Hy(VWW) = pigjlog(pig;) = > > pig;logqi+> > qipilogp; = Hy(V)+Hu(W).
1,J J 1 g

COROLLARY: Let (M, u, T) be a dynamical system, and V a partition of M.
Assume that T7*(V) is independent from V* for all . Then H,(V") = nH,(V),
giving h,(T,V) = H,(V).

REMARK: It is possible to show (and it clearly follows from Shannon’s
description of entropy) that H(V Vv W) < H(V) + H(VW), and the equality
IS reached if and only if V and YV are independent. This result is called
subadditivity of entropy. This implies, in particular, that H,(V") < nH,(V),
hence the limit lim + H,(V") is always finite.
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Entropy of dynamical system: Bernoulli space

DEFINITION: Let P be a finite set, PZ the product of Z copies of P,
> C Z a finite subset, and 7wy : PZ —s PI>| projection to the corresponding
components. Cylindrical sets are sets Cg := ny1(R), where R C P>l is any
subset.

REMARK: For Bernoulli space, a complement to an cylindrical set is
again a cylindrical set, and the cylindrical sets form a Boolean algebra.

DEFINITION: Bernoulli measure on PZ is u such that u(Cp) = PIET

EXAMPLE: Let V = {V;} be a finite partition of Bernoulli space M = pPZ
into cylindrical sets, a T' the Bernoulli shift. Let > C Z be a finite subset
such that all V; are obtained as nx'(R;) for some R; C PI*|. For N sufficienty
big, the sets X and T %(X) don't intersect. In this case, the partitions ViV
and 7Y (V) are independent, giving h,(T",V) = H,(V). Since h,(T) =
1/Nh,(TN) > H,(V), this implies that the entropy of T is positive.
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Approximating partitions

LEMMA 1: Let (M,u) be a space with measure, and A an algebra of mea-
surable subsets of M which generates any measurable subset uo to measure
0. Then for any partition V with finite entropy and any 0. there exists a
finite partition W C A such that H,(WV V) — H,(W) < e.

Proof: Using Lebesgue approximation theorem, we can approximate the par-
tition V by W C A with arbitrary precision: for each V; € V there exists W; € W
(which can be empty) such that u(V;AW;) < e;. Then

H, WV V) — H\W) =Y piHu(p; tu(W; 0 V1), oy py tu(W; N V).
)

where p, = pu(W;). However, W is chosen in such a way that u(W; NV;) is
arbitrarily close to p;, and u(W; N'V;) is arbitrarily small for j # 7, hence the
entropy Hﬂ(pi_lu(Wi NnVy), ...,pz-_l,u(Wi N Vy)) is arbitrarily small. m
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Kolmogorov-Sinai theorem

THEOREM: (Kolmogorov-Sinai)

Let (M, u,T) be a dynamical system, and V1 < V5 < ... a sequence of partitions
of M finite entropy, such that the subsets (J72; V; generate the o-algebra of
measurable sets, up to measure zero. Then h,(T) = limy h, (T, Vn).

Proof: Notice that h,(T,Vn) is monotonous as a function of n, because
Vi < Vo < ... Moreover, h,(T,VY) = h,(T,Vn) as shown above. Since
any partition W admits an approximation by a partition from the o-algebra
generated by V,, we obtain that for n sufficiently big, one has h,(T,W) <
hu(T, V) + ¢ = hu(T,Vyn) + ¢ Passing to the limit as e — 0, obtain that
hu(T, W) <limphy(T,V5). =

DEFINITION: We say that a partition V _is a generator, or generating
partition if the union of all V" = \/;?:_(% T—*(V) generates the o-algebra of
measurable sets, up to measure zero.

COROLLARY: Let V be a generating partition on (M, ,T). Then h,(T) =
hu(T,V).

Proof: By Kolmogorov-Sinai, h,(T) = limy hy(T, V™). However, h,(T,V") =
hu(T,V) as shown above. =
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Entropy of a dynamical system: Bernoulli space (2)

REMARK: Let (M = P%, 1, T) be the Bernoulli system, with P = {z1, ..., 2p}
and I1; the projection to -th component. Consider a partition ¥V with M =
H?:l I‘Igl(a;z-). Clearly, the Borel o-algebra is generated by I_I,L-_l({a:}). Then
V is a generating partition. However, h,(T,V) = Zle%log(p) = log(p). We
have proved that h,(7T") = log(|P]).

11



Smooth ergodic theory, lecture 21 M. Verbitsky

Entropy and measure decomposition

PROPOSITION: Let M be a space with o-algebra, T' a measurable map, t €
[0,1] and u, v be T-invariant measures. Consider the measure p ;= tu+(1—t)v.
Then hy(T,V) = thu(T,V) + (1 —t)ho(T, V).

Proof. Step 1: For any pi,....,pn,q1,-.-,qn € [0,1] with Y ¢, = Y p; = 1, we
have

— > (tpi+ (1= 1)g;) log(tp; + (1 —t)g;) > —t D _pilogp; — (1 =) > q;ilogq;, (%)

because the function x — —zlogx is concave. On the other hand, —log(tp; +
(1 —1t)g;) < —log(tp;), because = — —logx is monotonously decreasing. This
gives

_Z(tpi_l_(l_t)%) log(tpi+ (1 —1t)g;) < —thz- Iog(tpz-)—thz- log((1—t)g;) =
- tzz:pz' logpi = (1 —1) }_4;109 ¢; — sz‘t'Oth - > pi(1- t; log(1 —t). (%)
The ZIast two terms of (;*) give Z Z

— > pitlogt —> pi(1 —¢)log(l —t) = —tlogt — (1 —¢)log(1l —¢t),

because > q;, = > p; = 1.
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Entropy and measure decomposition (2)

Proof. Step 1: For any pi,...,Pn,q1,---,qn € [0,1] with Y ¢ = > p;, = 1, we
have

—2_(tpi + (1 = )gi) log(tp; + (1 = t)q;) > —t 3 pilogp; — (1 —1) 3 gilogq;, ()
- i(tpi + (1 —1)g;) 1og(tp; + (1 — 8)q;) < —tim logp; — (1 —t) Ez:qq; 109 g;—

Z —tlogt—z(l—t) log(1l —t) Z ()
Step 2: Comparing the inequalities (*) and (**), we obtain
tH, (V) +(1—1) Hy(V) < Hp(V) < tHu(V)+(1—1) Hy(V) —tlog t— (1—t) log(1—t)

Passing to the limit of %H(V”) and using Iimn%(—tlog t—(1—-t)log(l1—t)) = 0.
we obtain that h,(T,V) = th,(T,V) 4+ (1 —t)h(T,V). =
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Jacobs theorem

REMARK: We have just shown that entropy of a partition is affine un-
der finite linear combination of probability measures. However, this
statement is false for a continuous decomposition of measures. Indeed, the
entropy of a partition is not continuous in the weak topology on mea-
sures. For example, entropy vanishes on all measures with finite support,
but any Radon measure is a limit of measures with finite support.

However, the entropy of a dynamical system is affine under the ergodic
decomposition.

The proof of the following theorem will be omitted.

THEOREM: (K. Jacobs)
Let (M,un, T) be a dynamical system, with M a complete metric space with
countable base. Let E be the set of all ergodic measures, and consider the
ergodic decomposition ¢ = [pvk, where v € E and k is the corresponding
measure on E (its existence and uniqueness we proved in Lecture 19). Then
hM(T) — fE hy(T)k.
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Topological entropy

DEFINITION: Let M be a compact topological space, and {U; C M} an
open cover, JU; = M. A cover {V; C M} is called a subcover if it is a subset
which is still a cover. Given a cover «, denote by N(«) the smallest cardinality
of a subcover of a. The entropy of a cover is H(a) = log N(«).

DEFINITION: Let f: M — M be a continuous map, a a cover, and
a” i=aV f~a)Vv..Vv F"T1(a). Define entropy of a map with respect to
the cover by H(f,a) := limy +H(a™).

EXERCISE: Prove that the function n — H(a™) is subadditive, that is,
H(a™T™) < H(a™) 4+ H(a™).

REMARK: For a subadditive monotonously non-decreasing sequence {ai;,»,
the sequence %an IS monotonously non-increasing, hence the limit Ilim,, =an
exists. Indeed, for such sequence, an—a,_1 > ap41—0an, hence b, ‘= a,41—an
is non-negative and monotonous, and its Cesaro sum +a, = %Z?zl b; is con-

n
vergent.

REMARK: The measure entropy is also subadditive, which explains
convergence.

DEFINITION: Define the topological entropy h(f) as sup, H(f, ).
15
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Metric entropy

REMARK: In old literature, “metric entropy” refers to the measure entropy
defined above, and both notions of “topological entropy” (previous slide) and
metric entropy (this slide) are called “topological entropy” .

DEFINITION: Let X C M be a subset of a metric space. We denote by
X(e) theset {ye M | d(y,X) <e}. This set is called e-neighbourhood of
X. An e-net is a subset X C M such that X(e¢) = M. Denote by N(M,¢) the
cardinality of the smallest e-net.

DEFINITION: Let T': M — M Dbe a continuous map of compact metric
spaces. Consider M™ as a metric space with the metric d((z1,...,zn), (y1,...,yn)) =
max(d(z1,y1),d(x2,92), ...d(xzn, yn)), and let Sy, := {(z, T(z), T%(z),....., T 1(z)) C
M™}. Consider the number h(T,e) = limu;l0g N(Sn,e). We define metric
entropy of T as h(T) = lim._o h(T,¢).
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Metric entropy, topological entropy and measure entropy

We omit the proof of the following two theorems.

THEOREM: Metric entropy is equal to the topological entropy.
THEOREM: For any continuous map 7' : M — M of compact metric
spaces, consider the number sup,, hu(T), where h,(T) is measure entropy, and
supremum is taken over all T-invariant probabilistic Borel measures. Then

sup, hy(T) = h(T): topological entropy is the supremum of measure
entropy.
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