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Unique ergodicity (reminder)

DEFINITION: From now on in this lecture we consider dynamical systems
(M, un, T), where M is a compact space, ¢ a probability Borel measure, and
T : M — M continuous. We say that u is uniquely ergodic if u is a unique
T-invariant probability measure on M.

REMARK: Clearly, uniquely ergodic measures are ergodic. Indeed, any
T-invariant non-negative measurable function is constant a.e. in pu.

THEOREM: Let (M, u,T) be as above, and p uniquely ergodic. Then the
closure of any orbit of 7' contains the support of ..

THEOREM: Let (M, u, T) be a dynamical system, with M a compact met-
ric space. Denote by Cn(f) the sum %z;ﬁ;& T'(f). Then the following are
equivalent.

(i) (M, pu,T) is uniquely ergodic.

(ii) For any continuous function f, the sequence C,(f) converges ev-
erywhere to a constant.

(iii) For any continuous function f, the sequence Cy,(f) converges uni-
formly to a constant.

(iv) For any Lipschitz function f, the sequence C,(f) converges uni-
formly to a constant.
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Riemannian manifolds (reminder)

DEFINITION: Let h € Sym2T*M be a symmetric 2-form on a manifold
which satisfies h(x,x) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any z,y € M, and any piecewise smooth path v : [a,b] — M
connecting xz and y, consider the length of v defined as L(vy) = J~ |Z—z|dt, where

9| = h(%,97)1/2. Define the geodesic distance as d(z,y) = infy L(y),

where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines a metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M =R", h =), daz%. Prove that the geodesic distance
coincides with d(z,y) = |z — y|.
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Covering maps

DEFINITION: Let ¢ : M — M be a continuous map of manifolds (or CW
complexes). We say that ¢ is a covering if ¢ is locally a homeomorphism,
and for any x € M there exists a neighbourhood U > x such that is a dis-
connected union of several manifolds U; such that the restriction gp)Ui IS a
homeomorphism.

THEOREM: A local homeomorphism of compacts spaces is a covering.

DEFINITION: Let ' be a discrete group continuously acting on a topolog-
ical space M. This action is called properly discontinuous if M is locally
compact, and the space of orbits of I' is Hausdorff.

THEOREM: Let ' be a discrete group acting on a manifold (or CW-
complex) M properly discontinuously. Suppose that the stabilizer group
" . Str(z) is the same for all x € M. Then M — M/I" is a covering.
Moreover, all covering maps are obtained like that.

These results are left as exercises.
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Finite coverings
EXAMPLE: A map z — nz in a circle S is a covering.

EXAMPLE: For any non-degenerate integer matric A € End(Z"), the corre-
sponding map of a torus T™ is a covering.

CLAIM: Let ¢ : M — M be a covering, with M connected. Then the
number of preimages |0~ 1(m)| is constant in M.

Proof: Since ¢~ 1(U) is a disconnected union of several copies of U, this
number is a locally constant function of m. =

DEFINITION: Let ¢ : M — M be a covering, with M connected. The
number |~ 1(m)| is called degree of a map o.

CLAIM: Any covering ¢ : M — M with M compact has finite degree.

Proof: Take U in such a way that go_l(U) is a disconnected union of several
copies of U, and let x € U. Then go_l(:z:) is discrete, and since M is compact,
any discrete subset of M is finite. m
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Homotopy lifting

LEMMA: (“Homotopy lifting lemma”) The map ¢ : M — M is a covering
iff ¢ is locally a homeomorphism, and for any path W : [0,1] — M and any
z € o~ 1(W(0)), there is a lifting ¥ : [0,1] — M such that ¥ (0) = z and
p(W (1)) = W(t).

( l[]
X

Homotopy lifting
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Expanding maps

DEFINITION: Let M be a compact Riemannian manifold. A smooth map
T : M — M is called expanding if there exists A > 0 and XA > 1 such that
|ID(T™)(v)| > AX™|v| for any tangent vector v € T M.

REMARK: Any expanding map 7' is a local diffeomorphism, by inverse
function theorem. Indeed, the differential D(T™) is everywhere invertible.

REMARK: By a result quoted above, this implies that 7' is a finite covering.
EXAMPLE: A map ¢ — nz in a circle S is expanding.

EXAMPLE: For any non-degenerate integer matric A € End(Z"), the corre-
sponding map of a torus T™ is a covering. If, in addition, |A(z)| > const|x| for
all x € R"™, it is expanding.
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Expanding maps: independence from the metric

CLAIM: For any two Riemannian metrics g and ¢’ on a compact manifold,
there exists a constant C > 1 such that for all v € TM, C~ 1|, < ]y <
Clolg.

Proof: Indeed, the function |v|4 iS continuous on the the compact space of
SyM ={veTM | |v|, =1}, and we can chose C such that C~1 < |v|g S /M <
C. n

REMARK: Let T be expanding on a Riemannian manifold (M, ¢"). Consider
another Riemannian metric g. Then |D(T™)(v)|g > C_1|D(T”)(v)|g/ and |v|g <
Clv|,. This gives

ID(T™)()|g = CHD(T™) ()| = CTLAN |y > CT2AN" vy,
and T is expanding in g, too. Therefore, T is expanding in g if and only if it
is expanding in ¢’: the notion is metric-independent.
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Expanding maps: main result

THEOREM: Let M be a compact manifold and T': M — M an expanding
map. Then there exists a unique 7T-invariant measure p on M, hence u
is uniquely ergodic. Moreover, (M, 1, T) is mixing.

This theorem will be proven later today.

REMARK: A T-invariant measure is often called SRB (Sinai-Ruelle-Bowen)
measure

REMARK: If T is C1, support of 1 can be a very bad fractal set, but if it is
C?, there is a constant C such that C~1 Vol < u < CVol, where Vol denotes
the Riemannian volume measure.
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Pushforward and pullback

DEFINITION: Let T': M — M be a covering of degree g, and f a function
on M. Define pushforward T.f as Ti(z) = %ZaziET_l(x) f(z;).

REMARK: Clearly, TxT*(f) = f.

DEFINITION: Given a measure p, let T*p, be a measure defined by (5, fT*u :
Jas Txfre. This measure is called pushforward of the measure L.

REMARK: The pushforward measure can be defined explicitly as follows.
Let U C M be an open subset such that go_l(U) is a disconnected union of
several copies of U, numbered as Uy, ...,Uq, and any X C U. Then T*u(X) =
523:1 n(X;), where Xq,..., X, are preimages of X in Uy, ..., Uy.
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Pushforward and pullback: strategy of the proof

REMARK: [y fT*u = [y Txfp and [y fTsp == [, T*fu: pullbacks and
pushforwards are adjoint. This is essentially a definition of pullback and
pushforward for measures.

REMARK: Since TiT*(f) = f, this gives (f,u) = (IxT*f, u) = (f, T Txu),
where (f,u) = [y fpo is the duality between measures and functions. This
gives p = T*Tyu for any measure p on M.

REMARK: Any Ti-invariant measure p is also T*-invariant, because y =
T*Txp = T*pu.

REMARK: A priori, a T*-invariant measure is not necessarily Tyx-invariant.
We will prove that for expanding maps the T*-invariant measure is unique,
By the previous remark, any Ti-invariant measure is T*-invariant, hence
the Ti-invariant measure is also unique.
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Inverse to an expanding map

REMARK: An inverse to an expanding maps is a multivalued function which
IS contracting on each branch.

Let's state this more formally.

CLAIM 1: Let T: M — M be an expanding map, |D(T™)(v)| = A\*|v| and
x,y € M. Then for an preimage ¥ € T "(x), there exists § €¢ T "(y),
such that d(z,y) < Am :

Proof: Let v : [a,b] — M be a geodesic of length d(x,y) connecting x to y.
Using homotopy lifting, we lift v to a map 5 : [a,b] — M, with T"(7) = ~.

Since Ly < AX'L, this gives d(&, ) < X%, where § = ~(b). =

COROLLARY: For any C-Lipschitz function f on M, T(f) is (AX*)~1C-
Lipschitz.

Proof: Indeed,

Cd(x,y)
AN

qn
T3 () (@) =TI < g™ Y 1f (&) — F(G)] <
i=1

where Z; € T~ "™(x) are all preimages of z, and y; the preimages of y, associated
with x; by homotopy lifting. =
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A T*-invariant measure
DEFINITION: Diaeter of a metric space M is diam(M) :=inf, ,cprd(z,y).

COROLLARY: Let T: M — M be an expanding map. Then T]'(f) con-
verges uniformly to a constant.

Proof: Since Lipschitz functions are CP-dense in the space of continuous
functions (Stone-Weierstrass), it suffices to prove the corollary when f is C-
Lipschitz. Then it takes values in an interval Iy of length 0C, where ¢ =
diam C. Since T7(f) is (AX")~1C-Lipschitz, T"(f) takes values in an interval
I, of length (AA)~1C. Then Ip D I; D .. D I, D .. is a monotonous
decreasing sequence of closed intervals, and their intersection is a single point
n(f) € R with the property sup,, |T7(f) — u(f)| < (AXN?)~1Cs5. m

REMARK: My Riesz representation theorem, f — u(f) defines a probabilis-
tic measure on M. Since u(f) = u(T«(f)), this measure is T*-invariant.

CLAIM: A T*invariant probabilistic measure on M is unique.

Proof: Let v be such a measure and f any Lipschitz function. Then [TI(f)v =
| fv, hence [ fv =limy [TP(f)v = [ p(f)v = p(f). u
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Unique ergodicity of Ti-invariant measure

COROLLARY: Let T': M — M be an expanding map. Then the Ti-
invariant probability measure is unique (and therefore, uniquely ergodic).

Proof: Let pu be a Ti-invariant measure; it exists by compactness of the
measure space, as shown in Lecture 5. Since T*u = T*Tyu = u, this measure
is T™-invariant, but T™-invariant measure is unique as shown above. =
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Volume functions (reminder)

Today I would repeat the content of the previous lecture, taking advantage
of the material we have covered in September assignments.

DEFINITION: Let C be the set of compact subsets in a topological space
M. A function \: C —R=0 js

* Monotone, if A(A) < X(B) for AC B

* Additive, if A(A]IB) = A(A) + X(B)

* Semiadditive, if A(AUB) < A(A) + X(B)
If these assumptions are satisfied, X\ is called volume function.

DEFINITION: Let A be a volume on M. For any S C M, define inner
measure \:(S) ;= sup A(C), where supremum is taken over all compact C C
C

S, and outer measure \*(S) = ir[}fA*(U), where infimum is taken over all
open U D S.

THEOREM: (Carathéodory)
T he outer measure is a measure on the Borel o-algebra.
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T«-invariant volume function

Let T': M — M be an expanding map of degree q. A Ti-invariant volume
function is constructed as follows. Let x € M be a point. Consider the sets
So = {a}, S1 =T"1(50), ..., Sn = T 1(Sp—1).

Given a compact K C M, let
1
p(K) :=limp,—|K N Sy
qn

Clearly, p is a Tx-invariant volume function, and p(M) = 1, hence the corre-
sponding outer measure Is Tix-invariant and probabilistic.
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Mixing

CLAIM: Let (M, un,T) be the expanding dynamical system, with T of degree
q. Then [ Ti(f)gun = [ fT*(g)w.

Proof: Clearly, Tu(f)g(z) = ¢ ¥, cr-1(y) [ (@i)g(x), and fT*(g)(z) = f(2)g(T(x)).
Then T*(T2(f)9) = 15, 110 F(T(@))g(T(2)) = fT*(g)(x). Since u is T*-
invariant, this implies [, Tx(f)gu = [ fT*(g)pn. =

COROLLARY: limy [3/(T:)™(f)gun = p(f)u(g)

Proof: As shown above, [,,(Tx)"(f)gn = [y fF(T*)"gu. Since (T*)"g uni-
formly converges to u(f), the integral [,; f(T*)"gu converges to u(f) [y gu =
p(Hpl(g). =

COROLLARY: An expanding dynamical system (M, u,T) is mixing.

Proof: The relation limy [5,(T%)™"(f)gun = u(f)u(g) is one of the definitions of
mixing systems. =
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VVoronoi partitions

DEFINITION: Let M be a metric space, and S C M a finite subset. Voronoi
cell associated with z; € S'is {z € M | (2,2;) < d(2,z;)Vj # i}. Voronoi
partition is partition of M onto its VVoronoi cells.

VVoronoi partition
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Voronoi partitions and expanding maps

CLAIM: Let T': M — M be an expanding map on a Riemannian manifold
(M,g), « € M a point, and Sg = {z}, 51 = T71(Sp),....,8. = T71(S,_1).
Denote by g; the Riemannian metric (T%)*(g), and let V; be the Voronoi
partition of (M, g;) associated with S;. Then for each cell P of V;. the set
T(P) is a Voronoi cell of V,_;.

Proof: Themap T : (M,g;) — (M, g;_1) is a local isometry mapping centers
of Voronoi partition V; to centers of V,_{. =

REMARK: For each Voronoi sell P in Vy, one has T,(P) = M. Then p(P) >

qin. Therefore, a set which contains a Voronoi cell has positive measure.

REMARK: Let (M,un, T) be an expanding system. As indicated above, to

show that M is support of u, it would suffice to show that each open set
contains a VVoronoi cell of V,, for n sufficiently big.
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