
Smooth ergodic theory, lecture 20 M. Verbitsky
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Unique ergodicity (reminder)

DEFINITION: From now on in this lecture we consider dynamical systems
(M,µ, T ), where M is a compact space, µ a probability Borel measure, and
T : M −→M continuous. We say that µ is uniquely ergodic if µ is a unique
T -invariant probability measure on M .

REMARK: Clearly, uniquely ergodic measures are ergodic. Indeed, any
T -invariant non-negative measurable function is constant a.e. in µ.

THEOREM: Let (M,µ, T ) be as above, and µ uniquely ergodic. Then the
closure of any orbit of T contains the support of µ.

THEOREM: Let (M,µ, T ) be a dynamical system, with M a compact met-
ric space. Denote by Cn(f) the sum 1

n

∑n−1
i=0 T

i(f). Then the following are
equivalent.

(i) (M,µ, T ) is uniquely ergodic.
(ii) For any continuous function f , the sequence Cn(f) converges ev-

erywhere to a constant.
(iii) For any continuous function f , the sequence Cn(f) converges uni-

formly to a constant.
(iv) For any Lipschitz function f , the sequence Cn(f) converges uni-

formly to a constant.
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Riemannian manifolds (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold

which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called

Riemannian metric, of Riemannian structure, and (M,h) Riemannian

manifold.

DEFINITION: For any x, y ∈M , and any piecewise smooth path γ : [a, b]−→M

connecting x and y, consider the length of γ defined as L(γ) =
∫
γ |
dγ
dt |dt, where

|dγdt | = h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ),

where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality

and defines a metric on M.

EXERCISE: Prove that this metric induces the standard topology on

M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.
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Covering maps

DEFINITION: Let ϕ : M̃ −→M be a continuous map of manifolds (or CW

complexes). We say that ϕ is a covering if ϕ is locally a homeomorphism,

and for any x ∈ M there exists a neighbourhood U 3 x such that is a dis-

connected union of several manifolds Ui such that the restriction ϕ
∣∣∣Ui is a

homeomorphism.

THEOREM: A local homeomorphism of compacts spaces is a covering.

DEFINITION: Let Γ be a discrete group continuously acting on a topolog-

ical space M . This action is called properly discontinuous if M is locally

compact, and the space of orbits of Γ is Hausdorff.

THEOREM: Let Γ be a discrete group acting on a manifold (or CW-

complex) M properly discontinuously. Suppose that the stabilizer group

Γ′ : StΓ(x) is the same for all x ∈ M . Then M −→M/Γ is a covering.

Moreover, all covering maps are obtained like that.

These results are left as exercises.
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Finite coverings

EXAMPLE: A map x−→ nx in a circle S1 is a covering.

EXAMPLE: For any non-degenerate integer matric A ∈ End(Zn), the corre-

sponding map of a torus Tn is a covering.

CLAIM: Let ϕ : M̃ −→M be a covering, with M connected. Then the

number of preimages |ϕ−1(m)| is constant in M.

Proof: Since ϕ−1(U) is a disconnected union of several copies of U , this

number is a locally constant function of m.

DEFINITION: Let ϕ : M̃ −→M be a covering, with M connected. The

number |ϕ−1(m)| is called degree of a map ϕ.

CLAIM: Any covering ϕ : M̃ −→M with M̃ compact has finite degree.

Proof: Take U in such a way that ϕ−1(U) is a disconnected union of several

copies of U , and let x ∈ U . Then ϕ−1(x) is discrete, and since M̃ is compact,

any discrete subset of M̃ is finite.
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Homotopy lifting

LEMMA: (“Homotopy lifting lemma”) The map ϕ : M̃ −→M is a covering
iff ϕ is locally a homeomorphism, and for any path Ψ : [0,1]−→M and any
x ∈ ϕ−1(Ψ(0)), there is a lifting Ψ̃ : [0,1]−→ M̃ such that Ψ̃(0) = x and
ϕ(Ψ̃(t)) = Ψ(t).

Homotopy lifting
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Expanding maps

DEFINITION: Let M be a compact Riemannian manifold. A smooth map

T : M −→M is called expanding if there exists A > 0 and λ > 1 such that

|D(Tn)(v)| > Aλn|v| for any tangent vector v ∈ TM .

REMARK: Any expanding map T is a local diffeomorphism, by inverse

function theorem. Indeed, the differential D(Tn) is everywhere invertible.

REMARK: By a result quoted above, this implies that T is a finite covering.

EXAMPLE: A map x−→ nx in a circle S1 is expanding.

EXAMPLE: For any non-degenerate integer matric A ∈ End(Zn), the corre-

sponding map of a torus Tn is a covering. If, in addition, |A(x)| > const|x| for

all x ∈ Rn, it is expanding.
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Expanding maps: independence from the metric

CLAIM: For any two Riemannian metrics g and g′ on a compact manifold,

there exists a constant C > 1 such that for all v ∈ TM, C−1|v|g 6 |v|g′ 6
C|v|g.

Proof: Indeed, the function |v|g is continuous on the the compact space of

Sg′M = {v ∈ TM | |v|g′ = 1}, and we can chose C such that C−1 6 |v|g
∣∣∣∣Sg′M 6

C.

REMARK: Let T be expanding on a Riemannian manifold (M, g′). Consider

another Riemannian metric g. Then |D(Tn)(v)|g > C−1|D(Tn)(v)|g′ and |v|g 6

C|v|g′. This gives

|D(Tn)(v)|g > C−1|D(Tn)(v)|g′ > C−1Aλn|v|g′ > C−2Aλn|v|g,

and T is expanding in g, too. Therefore, T is expanding in g if and only if it

is expanding in g′: the notion is metric-independent.
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Expanding maps: main result

THEOREM: Let M be a compact manifold and T : M −→M an expanding

map. Then there exists a unique T -invariant measure µ on M, hence µ

is uniquely ergodic. Moreover, (M,µ, T ) is mixing.

This theorem will be proven later today.

REMARK: A T -invariant measure is often called SRB (Sinai-Ruelle-Bowen)

measure

REMARK: If T is C1, support of µ can be a very bad fractal set, but if it is

C2, there is a constant C such that C−1 Vol 6 µ 6 C Vol, where Vol denotes

the Riemannian volume measure.
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Pushforward and pullback

DEFINITION: Let T : M −→M be a covering of degree q, and f a function

on M . Define pushforward T∗f as T∗(x) = 1
q

∑
xi∈T−1(x) f(xi).

REMARK: Clearly, T∗T ∗(f) = f .

DEFINITION: Given a measure µ, let T ∗µ be a measure defined by
∫
M fT ∗µ :=∫

M T∗fµ. This measure is called pushforward of the measure µ.

REMARK: The pushforward measure can be defined explicitly as follows.

Let U ⊂ M be an open subset such that ϕ−1(U) is a disconnected union of

several copies of U , numbered as U1, ..., Uq, and any X ⊂ U . Then T ∗µ(X) =
1
q

∑q
i=1 µ(Xi), where X1, ..., Xq are preimages of X in U1, ..., Uq.
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Pushforward and pullback: strategy of the proof

REMARK:
∫
M fT ∗µ :=

∫
M T∗fµ and

∫
M fT∗µ :=

∫
M T ∗fµ: pullbacks and

pushforwards are adjoint. This is essentially a definition of pullback and

pushforward for measures.

REMARK: Since T∗T ∗(f) = f , this gives 〈f, µ〉 = 〈T∗T ∗f, µ〉 = 〈f, T ∗T∗µ〉,
where 〈f, µ〉 =

∫
M fµ is the duality between measures and functions. This

gives µ = T ∗T∗µ for any measure µ on M.

REMARK: Any T∗-invariant measure µ is also T ∗-invariant, because µ =

T ∗T∗µ = T ∗µ.

REMARK: A priori, a T ∗-invariant measure is not necessarily T∗-invariant.

We will prove that for expanding maps the T ∗-invariant measure is unique,

By the previous remark, any T∗-invariant measure is T ∗-invariant, hence

the T∗-invariant measure is also unique.
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Inverse to an expanding map

REMARK: An inverse to an expanding maps is a multivalued function which
is contracting on each branch.

Let’s state this more formally.

CLAIM 1: Let T : M −→M be an expanding map, |D(Tn)(v)| > Aλn|v| and
x, y ∈ M . Then for any preimage x̃ ∈ T−n(x), there exists ỹ ∈ T−n(y),
such that d(x̃, ỹ) 6 d(x,y)

Aλn .

Proof: Let γ : [a, b]−→M be a geodesic of length d(x, y) connecting x to y.
Using homotopy lifting, we lift γ to a map γ̃ : [a, b]−→M , with Tn(γ̃) = γ.
Since Lγ̃ 6 AλnLγ, this gives d(x̃, ỹ) 6 d(x,y)

Aλn , where ỹ = γ(b).

COROLLARY: For any C-Lipschitz function f on M, Tn∗ (f) is (Aλn)−1C-
Lipschitz.

Proof: Indeed,

|Tn∗ (f)(x)− Tn∗ (f)(y)| 6 q−n
qn∑
i=1

|f(x̃i)− f(ỹi)| 6
Cd(x, y)

Aλn
,

where x̃i ∈ T−n(x) are all preimages of x, and ỹi the preimages of y, associated
with x̃i by homotopy lifting.
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A T ∗-invariant measure

DEFINITION: Diaeter of a metric space M is diam(M) := infx,y∈M d(x, y).

COROLLARY: Let T : M −→M be an expanding map. Then Tn∗ (f) con-
verges uniformly to a constant.

Proof: Since Lipschitz functions are C0-dense in the space of continuous
functions (Stone-Weierstrass), it suffices to prove the corollary when f is C-
Lipschitz. Then it takes values in an interval I0 of length δC, where δ :=
diamC. Since Tn∗ (f) is (Aλn)−1C-Lipschitz, Tn(f) takes values in an interval
In of length (Aλn)−1C. Then I0 ⊃ I1 ⊃ ... ⊃ In ⊃ ... is a monotonous
decreasing sequence of closed intervals, and their intersection is a single point
µ(f) ∈ R with the property supm |Tn∗ (f)− µ(f)| 6 (Aλn)−1Cδ.

REMARK: My Riesz representation theorem, f −→ µ(f) defines a probabilis-
tic measure on M . Since µ(f) = µ(T∗(f)), this measure is T ∗-invariant.

CLAIM: A T ∗-invariant probabilistic measure on M is unique.

Proof: Let ν be such a measure and f any Lipschitz function. Then
∫
Tn∗ (f)ν =∫

fν, hence
∫
fν = limn

∫
Tn∗ (f)ν =

∫
µ(f)ν = µ(f).
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Unique ergodicity of T∗-invariant measure

COROLLARY: Let T : M −→M be an expanding map. Then the T∗-
invariant probability measure is unique (and therefore, uniquely ergodic).

Proof: Let µ be a T∗-invariant measure; it exists by compactness of the

measure space, as shown in Lecture 5. Since T ∗µ = T ∗T∗µ = µ, this measure

is T ∗-invariant, but T ∗-invariant measure is unique as shown above.
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Volume functions (reminder)

Today I would repeat the content of the previous lecture, taking advantage

of the material we have covered in September assignments.

DEFINITION: Let C be the set of compact subsets in a topological space

M . A function λ : C−→ R>0 is

* Monotone, if λ(A) 6 λ(B) for A ⊂ B
* Additive, if λ(A

∐
B) = λ(A) + λ(B)

* Semiadditive, if λ(A ∪B) 6 λ(A) + λ(B)

If these assumptions are satisfied, λ is called volume function.

DEFINITION: Let λ be a volume on M . For any S ⊂ M , define inner

measure λ∗(S) := sup
C
λ(C), where supremum is taken over all compact C ⊂

S, and outer measure λ∗(S) := inf
U
λ∗(U), where infimum is taken over all

open U ⊃ S.

THEOREM: (Carathéodory)

The outer measure is a measure on the Borel σ-algebra.
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T∗-invariant volume function

Let T : M −→M be an expanding map of degree q. A T∗-invariant volume

function is constructed as follows. Let x ∈ M be a point. Consider the sets

S0 = {x}, S1 = T−1(S0), ..., Sn = T−1(Sn−1).

Given a compact K ⊂M , let

ρ(K) := limn
1

qn
|K ∩ Sn|

Clearly, ρ is a T∗-invariant volume function, and ρ(M) = 1, hence the corre-

sponding outer measure is T∗-invariant and probabilistic.
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Mixing

CLAIM: Let (M,µ, T ) be the expanding dynamical system, with T of degree

q. Then
∫
M T∗(f)gµ =

∫
fT ∗(g)µ.

Proof: Clearly, T∗(f)g(x) = 1
q

∑
xi∈T−1(x) f(xi)g(x), and fT ∗(g)(x) = f(x)g(T (x)).

Then T ∗(T∗(f)g) = 1
q

∑
xi∈T−1(x) f(T (xi))g(T (x)) = fT ∗(g)(x). Since µ is T ∗-

invariant, this implies
∫
M T∗(f)gµ =

∫
fT ∗(g)µ.

COROLLARY: limn
∫
M(T∗)n(f)gµ = µ(f)µ(g)

Proof: As shown above,
∫
M(T∗)n(f)gµ =

∫
M f(T ∗)ngµ. Since (T ∗)ng uni-

formly converges to µ(f), the integral
∫
M f(T ∗)ngµ converges to µ(f)

∫
M gµ =

µ(f)µ(g).

COROLLARY: An expanding dynamical system (M,µ, T ) is mixing.

Proof: The relation limn
∫
M(T∗)n(f)gµ = µ(f)µ(g) is one of the definitions of

mixing systems.
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Voronoi partitions

DEFINITION: Let M be a metric space, and S ⊂M a finite subset. Voronoi

cell associated with xi ∈ S is {z ∈ M | (.z, xi) 6 d(z, xi)∀j 6= i}. Voronoi

partition is partition of M onto its Voronoi cells.

Voronoi partition
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Voronoi partitions and expanding maps

CLAIM: Let T : M −→M be an expanding map on a Riemannian manifold

(M, g), x ∈ M a point, and S0 = {x}, S1 = T−1(S0), ..., Sn = T−1(Sn−1).

Denote by gi the Riemannian metric (T i)∗(g), and let Vi be the Voronoi

partition of (M, gi) associated with Si. Then for each cell P of Vi. the set

T (P ) is a Voronoi cell of Vi−1.

Proof: The map T : (M, gi)−→ (M, gi−1) is a local isometry mapping centers

of Voronoi partition Vi to centers of Vi−1.

REMARK: For each Voronoi sell P in Vn, one has Tn(P ) = M . Then ρ(P ) >
1
qn. Therefore, a set which contains a Voronoi cell has positive measure.

REMARK: Let (M,µ, T ) be an expanding system. As indicated above, to

show that M is support of µ, it would suffice to show that each open set

contains a Voronoi cell of Vn, for n sufficiently big.
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