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Teoria Ergódica Diferenciável
lecture 19: Disintegration of measures and unique ergodicity

Instituto Nacional de Matemática Pura e Aplicada
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Choquet theorem (reminder)

THEOREM: (Choquet theorem) Let K ⊂ V be a compact, convex subset

in a locally convex topological vector space, R the closure of the set E(K) of

its extreme points, and P the space of all probabilistic Borel measures on R.

Consider the map Φ : P −→K putting µ to
∫
x∈R xµ. Then Φ is surjective.

Proof: By weak-∗ compactness of the space of measures, P is compact.

The image of Φ is convex and contains all points of R which correspond to

atomic measures. On the other hand, an image of a compact set under a

continuous map is compact, hence Φ(P ) is compact and complete. Finally,

K is a completion of a convex hull of R, hence K = Φ(P ).

REMARK: The measure µ associated with a point k ∈ K is not necessarily

unique. If Φ : P −→K is bijective, the set K is called a simplex.
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Ergodic decomposition of a measure (reminder)

THEOREM: Let Γ be a group (or a semigroup) acting on a topological

space M and preserving the Borel σ-algebra, P the space of all Γ-invariant

probabilistic measures on M , and R the space of ergodic probabilistic mea-

sures. Then, for each µ ∈ P , there exists a probability measure ρµ on R,

such that µ =
∫
x∈R xρµ. Moreover, if Γ is countable, the measure ρµ is

uniquely determined by µ.

REMARK: Such a form ρµ is called ergodic decomposition of a form µ.

Existence of ergodic decomposition follows from Choquet theorem.

Uniqueness follows from the disintegration, see the next slides.
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Probability kernels and disintegragion of measures

DEFINITION: Let X, Y be spaces with σ-algebras, P the space of probability

measures on X, and y
ϕ7→ µy a map from Y to P . We say that ϕ is probability

kernel if the map y −→
∫
X fµy gives a measurable function on Y for any

bounded, measurable function f on X.

EXAMPLE: Let (A,µ) and (B, ν) be probability spaces, and A × B π−→ B

the projection. By Fubini theorem, for any measurable, bounded function f

on A×B, the restriction of f to π−1(b) is integrable almost everywhere, and∫
A×B f =

∫
b∈B ν

∫
A×{b} fµ. Then b−→ µ

∣∣∣X×{b} is a probability kernel.

DEFINITION: Let µ, µ′ be measures, with µ absolutely continuous with

respect to µ′. Radon-Nikodym tell us that µ = fµ′, for some non-negative

measurable function f . Then f is called Radon-Nikodym derivative and

denoted by f = µ
µ′.
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Disintegragion of measures

THEOREM: (disintegration of measures) Let (X,µ), (Y, ν) be spaces with

probability measures, and π : X −→ Y measurable map such that π∗(µ) = ν.

Denote the space of probability measures on X by P . Assume that X is a

metrizable topological space with Borel σ-algebra. Then π∗(fµ) is absolutely

continuous with respect to ν. Moreover, there exists a probability kernel

Y −→ P mapping y ∈ Y to µy, such that

π∗(fµ)

ν
(y) =

∫
π−1(y)

fµy. (∗)

Proof. Step 1: Absolute continuity of π∗(fµ) is clear, because a preimage

of measure zero subset in Y has measure zero in X, hence it has measure zero

in the measure fµ. It remains to check that µy(f) := π∗(fµ)
ν (y) defines a

probability measure.

Step 2: This functional is a measure by Riesz representation theorem.

Indeed, it is non-negative and continuous on C0(M). Since π∗µ = ν, one has

µy(1) = 1, and this measure is probabilistic.

REMARK: Disintegration of measures is unique by construction.
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Disintegration and orthogonal projection

CLAIM: Let (X,µ), (Y, ν) be spaces with probability measure, and π : X −→ Y

measurable map such that π∗(µ) = ν. Consider the pullback map

L2(Y, ν)−→ L2(X,µ), which is by construction an isometry, and let Π be

the orthogonal projection from L2(X,µ) to the image of L2(Y, ν). Then

Π(f)(y) =
∫
X fµy, where y 7→ µy is the disintegration probability kernel

constructed above.

Proof: Let g ∈ L2(Y ). Then
∫
X fπ

∗gµ =
∫
Y π∗(fµ)g. This gives〈

π(f)µ

ν
, g

〉
= 〈f, π∗g〉 = 〈Π(f), g〉.

We obtained that π(f)µ
ν = Π(f), giving

∫
X fµy = π(f)µ

ν (y) = Π(f)(y).
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Disintegration and conditional expectation

DEFINITION: Probability space is the set M , elements of which are called

outcomes, equipped with a σ-algebra of subsets, called events, and a prob-

ability measure µ. In this interpretation, the measure of an event U ⊂ M is

its probability. A random variable is a measurable map f : M −→ R. Its

expected value is E(f) :=
∫
M fµ.

DEFINITION: Let A ⊂M be an event with µ(A) > 0. Conditional expec-

tation of the random variable f is EA(f) :=
∫
A fµ

µ(A) . This is an expectation of f

under the condition that the event A happened. The conditional expectation

EA(χB) := µ(A∩B)
µ(A) is probability that B happens under the condition that A

happened.

REMARK: Consider now the map (X,µ)
π−→ (Y, ν), and let

π∗(fµ)

ν
(y) =

∫
π−1(y)

fµy,

define the probability kernel µy. The conditional expectation Eπ−1(y)(f)

(expectation of f on the set π−1(y)) is equal to
∫
M fµy.
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Disintegration and ergodic decomposition

THEOREM: Let X be a metrizable topological space, A its Borel σ-algebra,
T : X −→X a measurable map, and µ a T-invariant measure. Consider the
σ-algebra AT of T -invariant Borel sets, and let π : (X,A)−→ (X,AT ) be the
identity map. Consider the corresponding disintegration y −→ µy of µ. Then
µy are ergodic for a. e. y.

REMARK: By definition of disintegration,
∫
X fµ =

∫
y∈X

∫
X fµy. Therefore,

this theorem gives another construction of ergodic decomposition. Unique-
ness of ergodic decomposition is immediately implied by uniqueness of
disintegration.

Proof. Step 1: Notice that all measures µy are T -invariant. Indeed, π∗fµ =
π∗Tfµ. Also, all measurable functions on (X,AT ) are T -invariant, hence
L2(X,AT ) is the space of all L2-integrable T -invariant functions. This im-
plies that

∫
X fµy = Π(f)(y) where Π : L2(X)−→ L2(X,AT ) is orthogonal

projection.

Step 2: To prove that µy is ergodic, we need to show that for any bounded
L2-measurable function f , the sequence Cn(f) := 1

n

∑n−1
i=0 T

if converges to
constant a.e. in µy for y a.e.

Step 3: The sequence Cn(f) converges to Π(f) a.e. in µ. However, Π(f) is
constant a.e. with respect to µy, because

∫
gΠ(f)µy = Π(g)Π(f)(y) and this

indegral depends only on
∫
M gµy.
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Unique ergodicity

DEFINITION: From now on in this lecture we consider dynamical systems
(M,µ, T ), where M is a compact space, µ a probability Borel measure, and
T : M −→M continuous. We say that µ is uniquely ergodic if µ is a unique
T -invariant probability measure on M .

REMARK: Clearly, uniquely ergodic measures are ergodic. Indeed, any
T -invariant non-negative measurable function is constant a.e. in µ.

THEOREM: Let (M,µ, T ) be as above, and µ uniquely ergodic. Then the
closure of any orbit of T contains the support of µ.

Proof: Let x ∈ M and xi = T i(x). Consider the atomic measure δxi, and let
Ci := 1

n

∑n−1
i=0 δxi. As shown in Lecture 5, any limit point C of the sequence

{Ci} is a T -invariant measure; the limit points exist by weak-∗ compactness.
However, C is supported on the closure {xi} of {xi}, because all δi vanish
on continuous functions which vanish on {xi}, and for any point z /∈ {xi},
there exists a continuous function vanishing on {xi} and positive in z.

EXERCISE: Find a map T : M −→M such that µ is uniquely ergodic, but
its support is not the whole M.

REMARK: Density of all orbits does not imply unique ergodicity.
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Unique ergodicity and uniform convergence

THEOREM: Let (M,µ, T ) be a dynamical system, with M a compact met-
ric space. Denote by Cn(f) the sum 1

n

∑n−1
i=0 T

i(f). Then the following are
equivalent.

(i) (M,µ, T ) is uniquely ergodic.
(ii) For any continuous function f , the sequence Cn(f) converges ev-

erywhere to a constant.
(iii) For any continuous function f , the sequence Cn(f) converges uni-

formly to a constant.
(iv) For any Lipschitz function f , the sequence Cn(f) converges uni-

formly to a constant.

Proof: Equivalence of (iii) and (iv) is clear, because Lipschitz functions are
dense in uniform topology by Stone-Weierstrass. The implications (iii) ⇒ (ii)
⇒ (i) are also clear. It remains to show that (i) implies (iii). Suppose that
Cn(f) does not convegre uniformly to

∫
M fµ. Then there exists a sequence

xjn such that Cjn(f)(xjn) >
∫
M fµ+ ε for some ε > 0. Consider the sequence

of measures ρn := 1
jn

∑jn−1
i=0 T i(δxjn). Then

∫
M fρn = Cjn(f)(xjn) >

∫
M fµ + ε.

Then the same is true for any limit point ρ of {ρn}:
∫
M fρ >

∫
M fµ + ε.

However, any such ρ is T -invariant, as shown in Lecture 5. Then µ and ρ are
non-equal T -invariant probability measures. We obtained a contradiction.
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Unique ergodicity for isometries

THEOREM: Let (M,µ, T ) be a dynamical system, with M a compact metric
space, and T an ergodic isometry. Then it is uniquely ergodic.

Proof. Step 1: It would suffice to show that Cn(f) := 1
n

∑n−1
i=0 T

i(f) uniformly
converges for any Lipschitz f . Then by ergodicity of T it converges to a
constant.

Step 2: If F is C-Lipschitz, then Cn(f) is also C-Lipschitz. However, Cn(f)
converges to f in L2(M), hence it converges pointwise on a dense subset
of M.

Step 3: In Lecture 4 it was shown that a sequence of C-Lipschitz functions
converging pointwise in a dense subset of M converges uniformly.

COROLLARY: Irrational circle rotations are uniquely ergodic.

DEFINITION: A sequence {xi} in a measured space (M,µ) is equidis-
tributed if the sequence 1

n

∑n−1
i=0 δxi converges to µ.

COROLLARY: Let R be an irrational circle rotation. Then the sequence
{Ri(x)} is equidistributed.

11


