Teoria Ergódica Diferenciável

lecture 19: Disintegration of measures and unique ergodicity

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, November 22, 2017

Choquet theorem (reminder)

THEOREM: (Choquet theorem) Let $K \subset V$ be a compact, convex subset in a locally convex topological vector space, R the closure of the set E(K) of its extreme points, and P the space of all probabilistic Borel measures on R. Consider the map $\Phi : P \longrightarrow K$ putting μ to $\int_{x \in R} x\mu$. Then Φ is surjective.

Proof: By weak-* compactness of the space of measures, P is compact. The image of Φ is convex and contains all points of R which correspond to atomic measures. On the other hand, an image of a compact set under a continuous map is compact, hence $\Phi(P)$ is compact and complete. Finally, K is a completion of a convex hull of R, hence $K = \Phi(P)$.

REMARK: The measure μ associated with a point $k \in K$ is not necessarily unique. If $\Phi : P \longrightarrow K$ is bijective, the set K is called a simplex.

Ergodic decomposition of a measure (reminder)

THEOREM: Let Γ be a group (or a semigroup) acting on a topological space M and preserving the Borel σ -algebra, P the space of all Γ -invariant probabilistic measures on M, and R the space of ergodic probabilistic measures. Then, for each $\mu \in P$, there exists a probability measure ρ_{μ} on R, such that $\mu = \int_{x \in R} x \rho_{\mu}$. Moreover, if Γ is countable, the measure ρ_{μ} is uniquely determined by μ .

REMARK: Such a form ρ_{μ} is called **ergodic decomposition** of a form μ .

Existence of ergodic decomposition follows from Choquet theorem. Uniqueness follows from the disintegration, see the next slides.

Probability kernels and disintegragion of measures

DEFINITION: Let X, Y be spaces with σ -algebras, P the space of probability measures on X, and $y \stackrel{\varphi}{\mapsto} \mu_y$ a map from Y to P. We say that φ is **probability** kernel if the map $y \longrightarrow \int_X f \mu_y$ gives a measurable function on Y for any bounded, measurable function f on X.

EXAMPLE: Let (A, μ) and (B, ν) be probability spaces, and $A \times B \xrightarrow{\pi} B$ the projection. By Fubini theorem, for any measurable, bounded function fon $A \times B$, the restriction of f to $\pi^{-1}(b)$ is integrable almost everywhere, and $\int_{A \times B} f = \int_{b \in B} \nu \int_{A \times \{b\}} f\mu$. Then $b \longrightarrow \mu |_{X \times \{b\}}$ is a probability kernel.

DEFINITION: Let μ, μ' be measures, with μ absolutely continuous with respect to μ' . Radon-Nikodym tell us that $\mu = f\mu'$, for some non-negative measurable function f. Then f is called **Radon-Nikodym derivative** and denoted by $f = \frac{\mu}{\mu'}$.

Disintegragion of measures

THEOREM: (disintegration of measures) Let (X, μ) , (Y, ν) be spaces with probability measures, and $\pi : X \longrightarrow Y$ measurable map such that $\pi_*(\mu) = \nu$. Denote the space of probability measures on X by P. Assume that X is a metrizable topological space with Borel σ -algebra. Then $\pi_*(f\mu)$ is absolutely continuous with respect to ν . Moreover, there exists a probability kernel $Y \longrightarrow P$ mapping $y \in Y$ to μ_y , such that

$$\frac{\pi_*(f\mu)}{\nu}(y) = \int_{\pi^{-1}(y)} f\mu_y. \quad (*)$$

Proof. Step 1: Absolute continuity of $\pi_*(f\mu)$ is clear, because a preimage of measure zero subset in *Y* has measure zero in *X*, hence it has measure zero in the measure $f\mu$. It remains to check that $\mu_y(f) := \frac{\pi_*(f\mu)}{\nu}(y)$ defines a probability measure.

Step 2: This functional is a measure by Riesz representation theorem. Indeed, it is non-negative and continuous on $C^0(M)$. Since $\pi_*\mu = \nu$, one has $\mu_y(1) = 1$, and this measure is probabilistic.

REMARK: Disintegration of measures is unique by construction.

Disintegration and orthogonal projection

CLAIM: Let (X, μ) , (Y, ν) be spaces with probability measure, and $\pi : X \longrightarrow Y$ measurable map such that $\pi_*(\mu) = \nu$. Consider the pullback map $L^2(Y,\nu) \longrightarrow L^2(X,\mu)$, which is by construction an isometry, and let Π be the orthogonal projection from $L^2(X,\mu)$ to the image of $L^2(Y,\nu)$. Then $\Pi(f)(y) = \int_X f\mu_y$, where $y \mapsto \mu_y$ is the disintegration probability kernel constructed above.

Proof: Let $g \in L^2(Y)$. Then $\int_X f \pi^* g \mu = \int_Y \pi_*(f \mu) g$. This gives

$$\left\langle \frac{\pi(f)\mu}{\nu}, g \right\rangle = \langle f, \pi^*g \rangle = \langle \Pi(f), g \rangle.$$

We obtained that $\frac{\pi(f)\mu}{\nu} = \Pi(f)$, giving $\int_X f\mu_y = \frac{\pi(f)\mu}{\nu}(y) = \Pi(f)(y)$.

Disintegration and conditional expectation

DEFINITION: Probability space is the set M, elements of which are called **outcomes**, equipped with a σ -algebra of subsets, called **events**, and a probability measure μ . In this interpretation, the measure of an event $U \subset M$ is its probability. A random variable is a measurable map $f : M \longrightarrow \mathbb{R}$. Its **expected value** is $E(f) := \int_M f\mu$.

DEFINITION: Let $A \subset M$ be an event with $\mu(A) > 0$. Conditional expectation of the random variable f is $E_A(f) := \frac{\int_A f\mu}{\mu(A)}$. This is an expectation of f under the condition that the event A happened. The conditional expectation $E_A(\chi_B) := \frac{\mu(A \cap B)}{\mu(A)}$ is probability that B happens under the condition that A happened.

REMARK: Consider now the map $(X, \mu) \xrightarrow{\pi} (Y, \nu)$, and let

$$\frac{\pi_*(f\mu)}{\nu}(y) = \int_{\pi^{-1}(y)} f\mu_y,$$

define the probability kernel μ_y . The conditional expectation $E_{\pi^{-1}(y)}(f)$ (expectation of f on the set $\pi^{-1}(y)$) is equal to $\int_M f \mu_y$.

Disintegration and ergodic decomposition

THEOREM: Let X be a metrizable topological space, A its Borel σ -algebra, T: $X \longrightarrow X$ a measurable map, and μ a T-invariant measure. Consider the σ -algebra A^T of T-invariant Borel sets, and let π : $(X, A) \longrightarrow (X, A^T)$ be the identity map. Consider the corresponding disintegration $y \longrightarrow \mu_y$ of μ . Then μ_y are ergodic for a. e. y.

REMARK: By definition of disintegration, $\int_X f\mu = \int_{y \in X} \int_X f\mu_y$. Therefore, this theorem gives another construction of ergodic decomposition. Uniqueness of ergodic decomposition is immediately implied by uniqueness of disintegration.

Proof. Step 1: Notice that all measures μ_y are *T*-invariant. Indeed, $\pi_* f\mu = \pi_* T f\mu$. Also, all measurable functions on (X, A^T) are *T*-invariant, hence $L^2(X, A^T)$ is the space of all L^2 -integrable *T*-invariant functions. This implies that $\int_X f\mu_y = \Pi(f)(y)$ where $\Pi : L^2(X) \longrightarrow L^2(X, A^T)$ is orthogonal projection.

Step 2: To prove that μ_y is ergodic, we need to show that for any bounded L^2 -measurable function f, the sequence $C_n(f) := \frac{1}{n} \sum_{i=0}^{n-1} T^i f$ converges to constant a.e. in μ_y for y a.e.

Step 3: The sequence $C_n(f)$ converges to $\Pi(f)$ a.e. in μ . However, $\Pi(f)$ is constant a.e. with respect to μ_y , because $\int g\Pi(f)\mu_y = \Pi(g)\Pi(f)(y)$ and this indegral depends only on $\int_M g\mu_y$.

Unique ergodicity

DEFINITION: From now on in this lecture we consider dynamical systems (M, μ, T) , where M is a compact space, μ a probability Borel measure, and $T: M \longrightarrow M$ continuous. We say that μ is **uniquely ergodic** if μ is a unique T-invariant probability measure on M.

REMARK: Clearly, **uniquely ergodic measures are ergodic.** Indeed, any *T*-invariant non-negative measurable function is constant a.e. in μ .

THEOREM: Let (M, μ, T) be as above, and μ uniquely ergodic. Then the closure of any orbit of T contains the support of μ .

Proof: Let $x \in M$ and $x_i = T^i(x)$. Consider the atomic measure δ_{x_i} , and let $C_i := \frac{1}{n} \sum_{i=0}^{n-1} \delta_{x_i}$. As shown in Lecture 5, any limit point C of the sequence $\{C_i\}$ is a T-invariant measure; the limit points exist by weak-* compactness. However, C is supported on the closure $\overline{\{x_i\}}$ of $\{x_i\}$, because all δ_i vanish on continuous functions which vanish on $\{x_i\}$, and for any point $z \notin \overline{\{x_i\}}$, there exists a continuous function vanishing on $\overline{\{x_i\}}$ and positive in z.

EXERCISE: Find a map $T : M \longrightarrow M$ such that μ is uniquely ergodic, but its support is not the whole M.

REMARK: Density of all orbits **does not** imply unique ergodicity.

Unique ergodicity and uniform convergence

THEOREM: Let (M, μ, T) be a dynamical system, with M a compact metric space. Denote by $C_n(f)$ the sum $\frac{1}{n} \sum_{i=0}^{n-1} T^i(f)$. Then the following are equivalent.

(i) (M, μ, T) is uniquely ergodic.

(ii) For any continuous function f, the sequence $C_n(f)$ converges everywhere to a constant.

(iii) For any continuous function f, the sequence $C_n(f)$ converges uniformly to a constant.

(iv) For any Lipschitz function f, the sequence $C_n(f)$ converges uniformly to a constant.

Proof: Equivalence of (iii) and (iv) is clear, because Lipschitz functions are dense in uniform topology by Stone-Weierstrass. The implications (iii) \Rightarrow (ii) \Rightarrow (i) are also clear. It remains to show that (i) implies (iii). Suppose that $C_n(f)$ does not convegre uniformly to $\int_M f\mu$. Then there exists a sequence x_{j_n} such that $C_{j_n}(f)(x_{j_n}) \ge \int_M f\mu + \varepsilon$ for some $\varepsilon > 0$. Consider the sequence of measures $\rho_n := \frac{1}{j_n} \sum_{i=0}^{j_n-1} T^i(\delta_{x_{j_n}})$. Then $\int_M f\rho_n = C_{j_n}(f)(x_{j_n}) \ge \int_M f\mu + \varepsilon$. Then the same is true for any limit point ρ of $\{\rho_n\}$: $\int_M f\rho > \int_M f\mu + \varepsilon$. However, any such ρ is *T*-invariant, as shown in Lecture 5. Then μ and ρ are non-equal *T*-invariant probability measures. We obtained a contradiction.

Unique ergodicity for isometries

THEOREM: Let (M, μ, T) be a dynamical system, with M a compact metric space, and T an ergodic isometry. Then it is uniquely ergodic.

Proof. Step 1: It would suffice to show that $C_n(f) := \frac{1}{n} \sum_{i=0}^{n-1} T^i(f)$ uniformly converges for any Lipschitz f. Then by ergodicity of T it converges to a constant.

Step 2: If *F* is *C*-Lipschitz, then $C_n(f)$ is also *C*-Lipschitz. However, $C_n(f)$ converges to *f* in $L^2(M)$, hence **it converges pointwise on a dense subset** of *M*.

Step 3: In Lecture 4 it was shown that a sequence of C-Lipschitz functions converging pointwise in a dense subset of M converges uniformly.

COROLLARY: Irrational circle rotations are uniquely ergodic.

DEFINITION: A sequence $\{x_i\}$ in a measured space (M, μ) is equidistributed if the sequence $\frac{1}{n}\sum_{i=0}^{n-1} \delta_{x_i}$ converges to μ .

COROLLARY: Let *R* be an irrational circle rotation. Then the sequence $\{R^i(x)\}$ is equidistributed.