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Radon-Nikodym theorem (reminder)

DEFINITION: Let S be a space equipped with a σ-algebra, and µ, ν two

measures on this σ-algebra. We say that ν is absolutely continuous with

respect to µ if for each measurable set A, µ(A) = 0 implies ν(A) = 0. This

relation is denoted ν � µ; clearly, it defines a partial order on measures.

THEOREM: (Radon-Nikodym) Let µ, ν be two measures on a space S

with a σ-algebra, satisfying µ(S) < ∞, ν(S) < ∞ and ν � µ. Then there

exists an integrable function f : S −→ R>0 such that ν = fµ.

COROLLARY: Let µ, ν be two ergodic measures on (M,Γ) which are not

proportional. Then ν 6� µ and µ 6� ν.

Proof: Indeed, otherwise we would have ν = fµ or µ = fν, where f is a

Γ-invariant measurable function. Then f is constant a. e. by ergodicity.
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Convex cones and extremal rays (reminder)

DEFINITION: Let V be a vector space over R, and K ⊂ V a subset. We
say that K is convex if for all x, y ∈ K, the interval αx + (1 − α)y, α ∈ [0,1]
lies in K. We say that K is a convex cone if it is convex and for all λ > 0,
the homothety map x−→ λx preserves K.

EXAMPLE: Let M be a space equipped with a σ-algebra A ⊂ 2M , and V
the space formally generated by all X ∈ A. Denote by S subspace in V ∗

generated by all finite measures. This space is called the space of finite
signed measures. The measures constitute a convex cone in S.

DEFINITION: Extreme point of a convex set K is a point x ∈ K such that
for any a, b ∈ K and any t ∈ [0,1], ta+(1−t)b = x implies a = b = x. Extremal
ray of a convex cone K is a non-zero vector x such that for any a, b ∈ K and
t1, t2 > 0, a decomposition x = t1a + t2b implies that a, b are proportional to
x.

DEFINITION: Convex hull of a set X ⊂ V is the smallest convex set
containing X.

EXAMPLE: Let V be a vector space, and x1, ..., xn, ... linearly independent
vectors. Simplex is the convex hull of {xi}. Its extremal points are {xi}
(prove it).
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Ergodic measures as extremal rays (reminder)

Lemma 1: Let (M,µ) be a measured space, and Γ a group which acts

ergodically on M . Consider a measure ν on M which is Γ-invariant and

satisfies ν � µ. Then ν = const · µ.

Proof: Radon-Nikodym gives ν = fµ. The function f = ν
µ is Γ-invariant,

because both ν and µ are Γ-invariant. Then f = const almost everywhere.

Lemma 2: Let µ1, µ2 be measures, t1, t2 ∈ R>0, and µ := t1µ1 + t2µ2. Then

µ1 � µ.

Proof: µ1(U) 6 t−1
1 µ(U), hence µ1(U) = 0 whenever µ(U) = 0.
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Ergodic measures as extremal rays 2 (reminder)

THEOREM: Let (M,µ) be a space equipped with a σ-algebra and a group Γ

acting on M and preserving the σ-algebra, and M the cone of finite inivariant

measures on M . Consider a finite, Γ-invariant measure on M . Then the

following are equivalent.

(a) µ ∈M lies in the extremal ray of M

(b) µ is ergodic.

(a) implies (b): Let U be an Γ-invariant measurable subset. Then µ = µ|U +

µ
∣∣∣M\U , and one of these two measures must vanish, because µ is extremal.

(b) implies (a): Let µ = µ1+µ2 be a decomposition of the measure µ onto a

sum of two invariant measures. Then µ� µ1 and µ� µ2 (Lemma 2), hence

µ is proportional to µ1 and µ2 (Lemma 1).

REMARK: A probability measure µ lies on an extremal ray if and only if

it is extreme as a point in the convex set of all probability measures

(prove it).
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Existence of ergodic measures (reminder)

To prove existence of ergodic measures, we use the following strategy:

1. Define topology on the space M of finite measures (”measure topol-

ogy” or ”weak-∗ topology”) such that the space of probability measures is

compact.

2. Use Krein-Milman theorem.

THEOREM: (Krein-Milman) Let K ⊂ V be a compact, convex subset in

a locally convex topological vector space. Then K is the closure of the

convex hull of the set of its extreme points.

This theorem implies that any Γ-invariant finite measure is a limit of finite

sums of ergodic measures.
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Faces of compact convex sets

DEFINITION: Face of a convex set A ⊂ V is a convex subset F ⊂ A such

that for all x, y ∈ A whenever αx+ (1− α)y ∈ F , 0 < α < 1, we have x, y ∈ F .

EXAMPLE: Let A ⊂ V be a convex set, and λ : V −→ R a linear map.

Consider the set Fλ := {a ∈ A | λ(a) = supx∈A λ(x)}. Then Fλ is a face of

A.

REMARK: Let x, y ∈ V be distinct points in a topological vector space.

Hahn-Banach theorem implies that there exists a continuous linear func-

tional λ : V −→ R such that λ(x) 6= λ(y).

COROLLARY: The set of extreme points of a compact convex subset

A ⊂ V is non-empty.

Proof: Indeed, from the above argument it follows that A has a non-trivial

face, which is also compact and convex. Intersection of a chain of faces

F1 ) F2 ) F3... is also a face, which is non-empty because all Fi are compact.

Now, Zorn lemma implies that the smallest face is a point.
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Krein-Milman theorem

THEOREM: Let A ⊂ V be a compact convex subset a topological vector

space. Then A is the closure of the convex hull of the set E(A) of

extreme points of A.

Proof: Let A1 be the closure of the convex hull of the set E(A) of extreme

points of A. Suppose that A1 ( A. Using Hahn-Banach theorem, we can find

a λ which vanishes on A1 and satisfies λ(z) > 0 for some z ∈ A. Then the

face Fλ = {a ∈ A | λ(a) = supx∈A λ(x)} does not intersect A1 and contains

an extreme point, as shown above.
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Choquet theorem

THEOREM: (Choquet theorem) Let K ⊂ V be a compact, convex subset

in a locally convex topological vector space, R the closure of the set E(K) of

its extreme points, and P the space of all probabilistic Borel measures on R.

Consider the map Φ : P −→K putting µ to
∫
x∈R xµ. Then Φ is surjective.

Proof: By weak-∗ compactness of the space of measures, P is compact.

The image of Φ is convex and contains all points of R which correspond to

atomic measures. On the other hand, an image of a compact set under a

continuous map is compact, hence Φ(P ) is compact and complete. Finally,

K is a completion of a convex hull of R, hence K = Φ(P ).

REMARK: The measure µ associated with a point k ∈ K is not necessarily

unique. If Φ : P −→K is bijective, the set K is called a simplex.

Ergodic decomposition of a measure

THEOREM: Let Γ be a group (or a semigroup) acting on a topological

space M and preserving the Borel σ-algebra, P the space of all Γ-invariant
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probabilistic measures on M , and R the space of ergodic probabilistic mea-

sures. Then, for each µ ∈ P , there exists a probability measure ρµ on R,

such that µ =
∫
x ∈ Rxρµ. Moreover, if Γ is countable, the measure ρµ is

uniquely determined by µ.

REMARK: Such a form ρµ is called ergodic decomposition of a form µ.

Existence of ergodic decomposition follows from Choquet theorem.

We prove uniqueness of ergodic decomposition in the next lecture.
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