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Radon-Nikodym theorem (reminder)

DEFINITION: Let S be a space equipped with a o-algebra, and u,v two
measures on this o-algebra. We say that v is absolutely continuous with
respect to u if for each measurable set A, u(A) = 0 implies v(A) = 0. This
relation is denoted v < u; clearly, it defines a partial order on measures.

THEOREM: (Radon-Nikodym) Let u,v be two measures on a space S
with a o-algebra, satisfying u(S) < oo, v(S) < o0 and v <« u. Then there
exists an integrable function f: S — R>0 such that v = fyp.

COROLLARY: Let u,v be two ergodic measures on (M, ") which are not
proportional. Then v £ p and p £ v.

Proof: Indeed, otherwise we would have v = fu or u = fr, where f is a
[ -invariant measurable function. Then f is constant a. e. by ergodicity. =
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Convex cones and extremal rays (reminder)

DEFINITION: Let V be a vector space over R, and K C V a subset. We
say that K is convex if for all z,y € K, the interval ax + (1 — o)y, o € [0, 1]
lies in K. We say that K is a convex cone if it is convex and for all A > 0O,
the homothety map x — A\x preserves K.

EXAMPLE: Let M be a space equipped with a o-algebra 2l C QM, and V
the space formally generated by all X € 2. Denote by S subspace in V*
generated by all finite measures. This space is called the space of finite
signed measures. The measures constitute a convex cone in S.

DEFINITION: Extreme point of a convex set K is a point x € K such that
for any a,b € K and any t € [0,1], ta+ (1 —t)b = z implies a = b = x. Extremal
ray of a convex cone K is a non-zero vector xz such that for any a,b € K and
t1,to > 0, a decomposition x = t1a + tob implies that a,b are proportional to
ZI.

DEFINITION: Convex hull of a set X C V is the smallest convex set
containing X.

EXAMPLE: Let V be a vector space, and =zx1,...,xn,... linearly independent
vectors. Simplex is the convex hull of {x;}. Its extremal points are {x;}
(prove it).
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Ergodic measures as extremal rays (reminder)

Lemma 1: Let (M,u) be a measured space, and I a group which acts
ergodically on M. Consider a measure v on M which is -invariant and
satisfies v < u. Then v = const - p.

Proof: Radon-Nikodym gives v = fu. The function f = % is [-invariant,
because both v and p are [-invariant. Then f = const almost everywhere. =

Lemma 2: Let u1,uo be measures, t1,to € R>9, and wi=tiu1 +tour. Then
p1 << -

Proof: u1(U) < t;lu(U), hence 1 (U) = 0 whenever u(U) = 0. =
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Ergodic measures as extremal rays 2 (reminder)

THEOREM: Let (M, ) be a space equipped with a o-algebra and a group I
acting on M and preserving the o-algebra, and M the cone of finite inivariant
measures on M. Consider a finite, I-invariant measure on M. Then the
following are equivalent.

(a) n € M lies in the extremal ray of M
(b) u is ergodic.

(a) implies (b): Let U be an I-invariant measurable subset. Then p = u|y +
N‘M\Uv and one of these two measures must vanish, because u is extremal.

(b) implies (a): Let u = pu1+u> be a decomposition of the measure p onto a
sum of two invariant measures. Then u > uq and u > us (Lemma 2), hence
1 is proportional to 1 and us (Lemma 1). =

REMARK: A probability measure u lies on an extremal ray if and only if
it iIs extreme as a point in the convex set of all probability measures
(prove it).
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Existence of ergodic measures (reminder)
To prove existence of ergodic measures, we use the following strategy:

1. Define topology on the space M of finite measures (" measure topol-
ogy” or "weak-x topology” ) such that the space of probability measures is
compact.

2. Use Krein-Milman theorem.
THEOREM: (Krein-Milman) Let K C V be a compact, convex subset in
a locally convex topological vector space. Then K is the closure of the

convex hull of the set of its extreme points.

This theorem implies that any [-invariant finite measure is a limit of finite
sums of ergodic measures.
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Faces of compact convex sets

DEFINITION: Face of a convex set A C V is a convex subset F' C A such
that for all z,y € A whenever ax+ (1 —a)y € F, 0 < a <1, we have z,y € F.

EXAMPLE: Let A C V be a convex set, and A : V — R a linear map.
Consider the set Fy :={ac€ A | Aa) =supgzcaA(z)}. Then F, is a face of
A.

REMARK: Let z,y € V be distinct points in a topological vector space.
Hahn-Banach theorem implies that there exists a continuous linear func-
tional A : V — R such that \(z) = A(y).

COROLLARY: The set of extreme points of a compact convex subset
A C V IS non-empty.

Proof: Indeed, from the above argument it follows that A has a non-trivial
face, which is also compact and convex. Intersection of a chain of faces
F1 2 F> 2 F3... is also a face, which is non-empty because all F; are compact.
Now, Zorn lemma implies that the smallest face is a point. =
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Krein-Milman theorem

THEOREM: Let A C V be a compact convex subset a topological vector
space. Then A is the closure of the convex hull of the set E(A) of
extreme points of A.

Proof: Let A be the closure of the convex hull of the set F(A) of extreme
points of A. Suppose that A; € A. Using Hahn-Banach theorem, we can find
a A which vanishes on A7 and satisfies A\(z) > 0 for some z € A. Then the
face I, ={a€ A | Aa) =supgecaA(x)} does not intersect A; and contains
an extreme point, as shown above. =
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Choquet theorem

THEOREM: (Choquet theorem) Let K C V be a compact, convex subset
in a locally convex topological vector space, R the closure of the set EF(K) of
its extreme points, and P the space of all probabilistic Borel measures on R.
Consider the map ® : P — K putting p to [,cpxzp. Then @ is surjective.

Proof: By weak-x compactness of the space of measures, P is compact.
The image of @ is convex and contains all points of R which correspond to
atomic measures. On the other hand, an image of a compact set under a
continuous map is compact, hence ®(P) is compact and complete. Finally,
K is a completion of a convex hull of R, hence K = &(P). =

REMARK: The measure p associated with a point k£ € K is not necessarily
unique. If ® : P — K is bijective, the set K is called a simplex.

Ergodic decomposition of a measure
THEOREM: Let I' be a group (or a semigroup) acting on a topological

space M and preserving the Borel o-algebra, P the space of all [-invariant
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probabilistic measures on M, and R the space of ergodic probabilistic mea-
sures. Then, for each p € P, there exists a probability measure p, on R,
such that p = [z € Rxp,. Moreover, if [ is countable, the measure p, is
uniquely determined by u.

REMARK: Such a form p, is called ergodic decomposition of a form pu.

Existence of ergodic decomposition follows from Choquet theorem.
We prove unigueness of ergodic decomposition in the next lecture.

10



