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Convergence in density (reminder)

DEFINITION: The (asymptotic) density of a subset J ⊂ Z>1 is the limit

limN
|J∩[1,N ]|

N . A subset J ⊂ Z>1 has density 1 if limN
|J∩[1,N ]|

N = 1.

DEFINITION: A sequence {ai} of real numbers converges to a in density

if there exists a subset J ⊂ Z>1 of density 1 such that limi∈J ai = a. The

convergence in density is denoted by Dlimi ai = a.

PROPOSITION: (Koopman-von Neumann, 1932) Let {ai} be a se-

quence of bounded non-negative numbers, ai ∈ [0, C]. Then convergence

to 0 in density is equivalent to the convergence of Cesàro sums:

Dlimi ai = 0⇔ lim
N

1

N

N∑
i=1

ai = 0

2



Smooth ergodic theory, lecture 17 M. Verbitsky

Mixing, weak mixing, ergodicity (reminder)

DEFINITION: Let (M,µ, T ) be a dynamic system, with µ a probability mea-
sure. We say that

(i) T is ergodic if limn
1
n

∑n−1
i=0 µ(T i(A) ∩ B) = µ(A)µ(B), for all measurable

sets A,B ⊂M .

(ii) T is weak mixing if Dlim
i→∞

µ(T i(A) ∩B) = µ(A)µ(B).

(iii) T is mixing, or strongly mixing if lim
i→∞

µ(T i(A) ∩B) = µ(A)µ(B).

REMARK: The first condition is equivalent to the usual definition of er-

godicity by the previous remark. Indeed, from (usual) ergodicity it follows
that limn

1
n

∑n−1
i=0 (T ∗)i(χA) = µ(A), which gives limn

1
n

∑n−1
i=0 (T ∗)i(χA)χB =

µ(A)χ(B) and the integral of this function is precisely µ(A)µ(B). Con-
versely, if limn

∫
(T ∗)i(χA)χB depends only on the measure of B, the function

limn
∫

(T ∗)i(χA) is constant, hence T is ergodic in the usual sense.

REMARK: Clearly, (iii) ⇒ (ii) ⇒ (i) (the last implication follows because the
density convergence implies the Cesàro convergence).
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Mixing and weak mixing on the product (reminder)

DEFINITION: Let (M,µ, T ) be a dynamical system. Consider the dynamical

system (M,µ, T )2 := (M×M,µ×µ, T ×T ), where µ×µ is the product measure

on M ×M , and T × T (x, y) = (T (x), T (y)).

THEOREM: Let (M,µ, T ) be a dynamical system, and (M,µ, T )2 its product

with itself. Then (M,µ, T )2 is (weak) mixing if and only (M,µ, T ) is (weak)

mixing.

Proof. Step 1: To simplify the notation, assume µ(M) = 1. To see that

(weak) mixing on (M,µ, T )2 implies the (weak) mixing on (M,µ, T ), we take

the sets A1 := A×M and B1 := B×M . Then µ(T i(A1)∩B1) = µ(T i(A)∩B)

and µ(A1)µ(B1) = µ(A)µ(B), hence

lim
i
µ(T i(A1) ∩B1) = µ(A1)µ(B1)

implies

lim
i
µ(T i(A) ∩B) = µ(A)µ(B).
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Mixing and weak mixing on the product 2 (reminder)

THEOREM: Let (M,µ, T ) be a dynamical system, and (M,µ, T )2 its product

with itself. Then (M,µ, T )2 is (weak) mixing if and only (M,µ, T ) is (weak)

mixing.

Step 2: Conversely, assume that (M,µ, T ) is mixing. Since the subalgebra

generated by cylindrical sets is dense in the algebra of measurable sets, it

would suffice to show that limi µ(T i(A1) ∩B1) = µ(A1)µ(B1) where A1, B1 ⊂
M2 are cylindrical. Write A1 = A × A′, B1 = B × B′. Then µ(TnA1 ∩ B1) =(
µ(TnA∩B)

)(
µ(TnA′∩B′)

)
. The first of the terms in brackets converges to

µ(A)µ(B), the second to µ(A′)µ(B′), giving

lim
i
µ(T i(A1) ∩B1) = µ(A)µ(B)µ(A′)µ(B′) = µ(A1)µ(B1).

REMARK: The same argument also proves that ergodicity of (M,µ, T )2

implies ergodicity of (M,µ, T ). The converse implication is invalid even for

a circle.
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Ergodic measures which are not mixing (reminder)

REMARK: Let Lα : S1 −→ S1 be a rotation with irrational angle α. In angle

coordinates on S1×S1, the rotation Lα×Lα acts as Lα×Lα(x, y) = (x+α, y+α).

Therefore, the closure of the orbit of (x, y) is always contained in the closed

set {(a, b) ∈ S1 × S1 | a− b = x− y}, and Lα × Lα has no dense orbits.

This gives the claim.

CLAIM: Irrational rotation of a circle is ergodic, but not weakly mixing.

Proof: Otherwise, Lα × Lα would be weak mixing, and hence ergodic, on

S1 × S1.
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Weak mixing and non-constant eigenfunctions (reminder)

I am going to prove the following theorem.

Theorem 1: Let (M,µ, T ) be a dynamical system. Then the following are

equivalent.

(i) (M,µ, T ) is weakly mixing.

(ii) The Koopman operator T : L2(M,µ)−→ L2(M,µ) has no non-constant

eigenvectors.

(iii) (M,µ, T )2 is ergodic.
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Tensor product

DEFINITION: Let V, V ′ be vector spaces over k, and W a vector space

freely generated by symbols v⊗v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subspace

generated by combinations av ⊗ v′ − v ⊗ av′, a(v ⊗ v′) − (av) ⊗ v′, (v1 + v2) ⊗
v′− v1⊗ v′− v2⊗ v′ and v⊗ (v′1 + v′2)− v⊗ v′1− v⊗ v

′
2, where a ∈ k. Define the

tensor product V ⊗k V ′ as a quotient vector space W/W1.

PROPOSITION: (“Universal property of the tensor product”)

For any vector spaces V, V ′, R, there is a natural identification Hom(V ⊗k
V ′, R) = Bil(V × V ′, R).

DEFINITION: A basis in a vector space V is a subset {vα} ⊂ V which is

linearly independent and generates V .

CLAIM: Suppose that V,W are vector spaces (without topology), and {vα},
{wβ} the bases (in Cauchy sense) in these spaces. Then {vα⊗wβ} is a basis

in V ⊗W .

Proof: The natural map 〈vα⊗wβ〉 −→ V ⊗W is by construction surjective and

invertible by the Universal Property of the tensor product.
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Tensor product and functions on a product

THEOREM: Let C(M) be the space of functions f : M −→ R, and C(N)
the spave of functions f : N −→ R. Consider the natural map Ψ : C(M) ⊗
C(N)−→ C(M ×N). Then Ψ is injective.

Proof. Step 1: For N,M finite Ψ is an isomorphism. Indeed, for any
m ∈ M and n ∈ N , the tensor product product χm ⊗ χn of atomic functions
χm and χn is mapped to χ(m,n), hence Ψ is surjective, and it is injective
because dimC(M)⊗ C(N) = |M ||N | = dimC(M ×N).

Step 2: For any linearly independent set of k functions f1, ..., fk ∈ C(M),
consider restriction of f1, ..., fk to a finite subset M0 ⊂ M . If there is a linear
relation

∑
i λifi

∣∣∣M0
for each finite subset, this linear relation is true on M .

Therefore, linearly independent functions remain linearly independent if
restricted on a sufficiently big finite subset.

Step 3: Let {fα} be a basis in C(M), {gα} a basis in C(N). Then {fα⊗gα} is
a basis in C(M)⊗C(N), indexed by α ∈ A, β ∈ B. Any vector x ∈ C(M)⊗C(N)
takes form x =

∑
i∈A0,j∈B0

xijfi⊗ gj, where A0 ⊂ A, B0 ⊂ B are finite subsets.

Then x
∣∣∣M0×N0

is non-zero for some finite subsets M0 ⊂M , N0 ⊂ N (Step 2).

This implies that Ψ(x)
∣∣∣M0×N0

is also non-zero (Step 1).
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Tensor product of Hilbert spaces

DEFINITION: Let H,H ′ be two Hilbert spaces. The tensor product H ⊗H ′

has a natural scalar product which is non-complete. Its completion H⊗̂H ′ is

called completed tensor product of H and H ′.

REMARK: Let {ei}, {e′i} be orthonormal bases in H,H ′. Then H⊗̂H ′ is all

series
∑
iαijei ⊗ e′j with

∑
i,j |αij|2 <∞.

CLAIM: Let (M,µ) and (M ′, µ′) be metrizable spaces with Borel measure.

Then L2(M ×M ′, µ× µ′) = L2(M,µ)⊗̂L2(M ′, µ′).

Proof: The product map L2(M,µ) ⊗ L2(M ′, µ′)−→ L2(M ×M ′, µ × µ′) is in-

jective because it it is injective on all functions, as shown above.

The tensor product C0(M)⊗ C0(M ′) is a dense (by Stone-Weierstrass) sub-

ring in C0(M ×M), the space L2(M,µ)⊗ L2(M ′, µ′) is its partial completion,

and L2(M,µ)⊗̂L2(M ′, µ′) is its completion. Therefore, L2(M,µ)⊗L2(M ′, µ′) ⊂
L2(M×M ′, µ×µ′) is a dense subset. Therefore, both spaces L2(M,µ)⊗̂L2(M ′, µ′)
and L2(M ×M ′, µ× µ′) are obtained as completions of L2(M,µ)⊗ L2(M ′, µ′).

They are isomorphic because completion is unique.
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Orthogonal operators on tensor square (reminder)

Last lecture we proved the following theorem.

THEOREM: Let U be an orthogonal operator on a Hilbert space H. Then
the following are equivalent:

(i) U has no eigenvectors in H.

(ii) U × U has no eigenvectors in H⊗̂H with eigenvalue 1.

This immediately implies equivalence of (ii) and (iii) in Theorem 1:

PROPOSITION: Let (M,µ, T ) be a dynamical system. Then T × T is
ergodic on M2 if and only if T has no non-constant eigenfunctions on
L2(M,µ).

Proof: Let H ⊂ L2(M,µ) be the space of all functions f with
∫
M fµ = 0.

Then L2(M,µ) = H ⊕ R and

L2(M2, µ2) = (H ⊕ R)⊗̂(H ⊕ R) = H⊗̂H ⊕H ⊕H ⊕ R.
Ergodicity of T ×T on M2 (and, hence, M) means that T ×T has no invariant
vectors in H and H ⊗H. By the previous theorem, this is equivalent to
T having no eigenvectors in H.
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Weak mixing and action on the square

Theorem 1: Let (M,µ, T ) be a dynamical system. Then the following are

equivalent.

(i) (M,µ, T ) is weakly mixing.

(ii) The Koopman operator T : L2(M,µ)−→ L2(M,µ) has no non-

constant eigenvectors.

(iii) (M,µ, T )2 is ergodic.

Proof. Step 1: Equivalence of (iii) and (ii) is already proven. Implication (i)

⇒ (iii) is elementary: indeed, (M,µ, T )2 is weakly mixing, hence ergodic. It

remains only to prove that (iii) implies (i).
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Weak mixing and action on the square (2)

Ergodicity of (M,µ, T )2 imlplies that (M,µ, T ) is weak mixing:

Step 2: Let A,B ⊂ M be measurable subsets. To simplify notation, we
assume that µ(M) = 1. Consider the sequence 1

n

∑n−1
i=0 (µ(T iA ∩ B)µ(M) −

µ(A)µ(B))2. The terms are non-negative, and by Koopman-von Neumann
convergence of this sequence implies density convergence of µ(T iA ∩
B)− µ(A)µ(B), which is the same as weak mixing.

Step 3:

1

n

n−1∑
i=0

(µ(T iA ∩B)− µ(A)µ(B))2 =

[
1

n

n−1∑
i=0

µ(T iA ∩B)2 − µ(A)2µ(B)2
]

+

[
2

n

n−1∑
i=0

µ(A)2µ(B)2 − µ(T iA ∩B)µ(A)µ(B).

]

The first term on RHS is 1
n

∑n−1
i=0 µ((T × T )iA2 ∩ B2) − µ(A2)µ(B2), and it

converges because T × T is ergodic. The second term is

−µ(A)µ(B)
2

n

n−1∑
i=0

µ(T iA ∩B)− µ(A)µ(B),

and it converges because M is ergodic.
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Arnold’s cat map (reminder)

DEFINITION: The Arnold’s cat map is A : T2 −→ T2 defined by A ∈
SL(2,Z),

A =

[
2 1
1 1

]
.

The eigenvalues of A are roots of det(t Id−A) = (t−2)(t−1)−1 = t2−3t−1.

This is a quadratic equation with roots α± = 3±
√

5
2 . On the vectors tangent

to the eigenspace of α−, the map An acts as (α−)n, hence the stable foliation

is tangent to these vectors. Similarly, unstable foliation is tangent to the

eigenspace of α+. This map is ergodic by E. Hopf theorem.
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Weak mixing for a torus

THEOREM: Let Tn = Rn/Zn be a torus, and A ∈ SL(n,Z) a matrix which
has no vectors v 6= 0 with {Ai(v), i = 0,1,2, ..., } finite. Then the action of
A on Tn is weak mixing.

Proof. Step 1: Let t1, ..., tn be coordinates on Rn. We can think of ti
as of angle coordinates on Tn. Consider the Fourier monomials Fl1,...,ln :=

e2π
√
−1

∑
liti, where l1, ..., ln are integers. As shown above,

L2(Tn) ∼= L2(S1)⊗̂L2(S1)⊗ ...L2(S1)︸ ︷︷ ︸
n times

.

This implies that the Fourier monomials form a Hilbert basis in L2(Tn).

Step 2: Let f ∈ L2(Tn) be an eigenvector of A, and f =
∑
αl1,...,lnFl1,...,ln

its Fourier decomposition. Consider the set Sε of all n-tuples l1, ..., ln ∈ Zn
such that |αl1,...,ln| > ε. Since

∑
|αl1,...,ln|

2 < ∞, the set Sε is finite for all
ε > 0. Since f is an eigenfunction of A, and A is unitary on L2(Tn), one has
A(f) = uf , with |u| = 1, and Sε is A-invariant. This is impossible, unless
Sε = {(0,0, ...,0)}, because A acts on all non-zero vectors with infinite orbits.

Step 3: We proved that A has no non-constant eigenfunctions on L2(Tn),
hence it is weak mixing.
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