
Smooth ergodic theory, lecture 16 M. Verbitsky
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Tensor product

DEFINITION: Let S be a set. Define vector space, freely generated by
S, as the space of functions ψ : S −→ k which are equal zero outside of a
finite subset in S.

DEFINITION: Let V, V ′ be vector spaces over k, and W a vector space freely
generated by v ⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subspace generated by
combinations av⊗v′−v⊗av′, a(v⊗v′)−(av)⊗v′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′
and v ⊗ (v′1 + v′2) − v ⊗ v′1 − v ⊗ v

′
2, where a ∈ k. Define the tensor product

V ⊗k V ′ as a quotient vector space W/W1.

PROPOSITION: (“Universal property of the tensor product”)
For any vector spaces V, V ′, R, there is a natural identification Hom(V ⊗k
V ′, R) = Bil(V × V ′, R).

Proof: Clearly, any bilinear map ρ ∈ Bil(V × V ′, R) defines a linear map ρ̃ :
W −→R, and ρ̃ vanishes on W1. This gives a map Bil(V ×V ′, R)−→ Hom(V ⊗k
V ′, R). Inverse map takes τ ∈ Hom(V ⊗k V ′, R) and interprets it as a bilinear
map in Bil(V × V ′, R).

COROLLARY: For finite-dimensional V, V ′, one has V ⊗k V ′ = Bil(V ×
V ′, k)∗.
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Dimension of of tensor product

CLAIM: Dimension of Bil(V × V ′, k) is equal to dimV dimV ′.

Proof. Step 1: Let {λi} be a basis in V ∗ and {λ′i} a basis in V ′. Denote by

{vi} {v′i} the dual basis in V, V ′. Then λiλ
′
j can be interpreted as vectors in

Bil(V × V ′, k). These vectors are clearly linearly independent: indeed∑
i,j

aijλiλ
′
j(vp, v

′
q) = apq.

This gives dim Bil(V × V ′, k) > dimV dimV ′.

Step 2: On the other hand, dimV ⊗V ′ 6 dimV dimV ′, because it is generated

by vp ⊗ vq, hence dim Bil(V × V ′, k) 6 dimV dimV ′.

COROLLARY: Let {xi} and {yi} be bases in V,W . Then {xi ⊗ yj} is a

basis in V ⊗kW .
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The space End(V )

Consider the space End(V ) of endomorphisms of a vector space V (that is,

of linear maps from V to itself). Given x ∈ V, λ ∈ V ∗, consider the map

x⊗ λ ∈ End(V ) mapping y ∈ V to xλ(y). This defines a bilinear map Bil(V ×
V ∗,End(V )). As usual, we associate with this map a homomorphism Ψ :

V ⊗k V ∗ −→ End(V ).

THEOREM: The map Ψ : V ⊗k V ∗ −→ End(V ) constructed above is an

isomorphism for any finite-dimensional space V .

Proof: The dimensions of End(V ) and V ⊗V ∗ are equal to n2, hence it suffices

to show that Ψ is surjective. However, elements x⊗λ ∈ End(V ) generate the

space End(V ) (prove it).
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Adjoint operators (reminder)

CLAIM: Let V be a Hilbert space, g a scalar product on V , and A ∈ End(V ).
Then there exists a unique operator A∗ ∈ End(V ) such that g(A(x), y) =
g(x,A∗(y)) for all x, y ∈ V .

Proof: Let x1, ..., xn, ... be an orthonormal basis in V , A = (aij) the matrix
of A, and and At the transposed matrix At = (aji). Then g(A(xi), xj) = aij
and g(xi, A

∗(xj)) = aij. This gives existence. Uniqueness is clear, because if
g(x, (A∗1 −A

∗
2)(y)) = 0 for all x, y, we have A∗1 −A

∗
2 = 0 (prove it).

DEFINITION: In this situation, the operator A∗ is called adjoint to A. In
orthonormal basis, this operator is represented by the transposed matrix.

CLAIM: A ∈ O(V ) ⇔ A∗A = 1.

Proof: The equality

g(A(x), A(y)) = g(x, y) (a)

holds for all x, y if and only if

g(x,A∗A(y)) = g(x, y). (b)
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Self-adjoint operators

DEFINITION: Let V be a vector space and g ∈ Sym2 V a scalar product.
An operator A : V −→ V is called self-adjoint if A = A∗.

REMARK: In orthonormal basis, a self-adjoint operator is given by a matrix
that satisfies A = At, that is, symmetric. The self-adjoint operators are
often called symmetric operators.

Assume that V is finitely-dimensional.

CLAIM: Let A be a self-adjoint operator on (V, g), and gA(x, y) := g(A(x), y).
Then gA is a bilinear symmetric form on V . Moreover, the map A 7→ gA
gives a bijective correspondence between self-adjoint operators and
bilinear symmetric forms on V .

Proof: Using g to identify V and V ∗, we obtain that the spaces V ∗ ⊗ V ∗ of
bilinear symmetric forms and End(V ) = V ⊗ V ∗ are also identified. This
identification is given by a map A 7→ g(A(·), ·). By definition, the form
gA(·, ·) := g(A(·), ·). is symmetric if and only if A is self-adjoint.

REMARK: This is just another way to construct the well-known bijective
correspondence between symmetric matrices and bilinear symmetric
forms.
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Normal form of a pair of bilinear symmetric forms

Theorem 1: (spectral theorem for self-adjoint operators)

Let A be a self-adjoint operator on a finite-dimensional space (V, g). Then

A can be diagonalized in an orthonormal basis.

Theorem 1′: (“principal axis theorem”) Let V = Rn, and h, h′ ∈ Sym2 V ∗

be two bilinear symmetric forms, with h positive definite. Then there exists

a basis x1, ..., xn which is orthonormal with respect to h, and orthogonal

with respect to h′.

These theorems are clearly equivalent; I will give a proof later.

7



Smooth ergodic theory, lecture 16 M. Verbitsky

“principal axis theorem”

REMARK: Theorem 1′ implies the following statement about ellipsoids: for

any positive definite quadratic form q in Rn, consider the ellipsoid

S = {v ∈ V | q(v) = 1}.

The group SO(n) acts on Rn preserving the standard scalar product. Then

for some g ∈ SO(n), g(S) is given by equation
∑
aix

2
i = 1, where ai > 0.

This is called finding principal axes of an ellipsoid.
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Maximum of a quadratic form on a sphere

LEMMA: Let V = Rn, and h, h′ ∈ Sym2 V ∗ be two bilinear symmetric forms,
h positive definite, and q(v) = h(v, v), q′(v) = h′(v, v) the corresponding
quadratic forms. Consider q′ as a function on a sphere S = {v ∈ V | q(v) = 1},
and let x ∈ S be the point where q′ attains maximum. Denote by x⊥h and
x⊥h′ the orthogonal complements with respect to h, h′. Then x⊥h = x⊥h′.

Proof: Since q′(x) reaches maximum on a sphere, one has d
dεq
′(x + εv) =

2h′(x, v) = 0 for any v ∈ TxS = x⊥h. This gives h′(x, x⊥h) = 0.

Theorem 1′: (“principal axis theorem”) Let V = Rn, and h, h′ ∈ Sym2 V ∗

be two bilinear symmetric forms, with h positive definite. Then there exists
a basis x1, ..., xn which is orthonormal with respect to h, and orthogonal
with respect to h′.

Proof: Let q(v) = h(v, v), q′(v) = h′(v, v) the corresponding quadratic forms.
Consider q′ as a function on a sphere S = {v ∈ V | q(v) = 1}, and let x1 ∈ S
be the point where q′ attains maximum. Then x

⊥h
1 = x

⊥h′
1 . Using induction,

we may assume that on x
⊥h
1 , Theorem 1 is already proven, and there exists a

basis x2, ..., xn orthonormal for h and orthogonal for h′. Then x1, x2, ..., xn is
orthonormal for h and orthogonal for h′.
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Weak convergence

DEFINITION: Let xi ∈ H be a sequence of points in a Hilbert space H. We

say that xi weakly converges to x ∈ H if for any z ∈ H one has limi g(xi, z) =

g(x, z).

REMARK: Let y(i) = αj(i)ej be a sequence of points in a a Hilbert space

with orthonormal basis ei. Then y(i) converges to y =
∑
j αjej if and only

if limiαj(i) = αi.

CLAIM: For any sequence {y(i) =
∑
j αj(i)ej} of points in a unit ball, there

exists a subsequence {ỹ(i) = α̃j(i)ei} weakly converging to y ∈ H.

Proof: Indeed, |αj(i)| 6 1, hence there exist a subsequence ỹ(i) = α̃j(i)xj
with α̃j(i) converging for each j. The limit belongs to the unit ball because

otherwise
∣∣∣∑n

j=1 α̃j(i)ej
∣∣∣ > 1, which is impossible.

REMARK: Note that the function x−→ |x| is not continuous in weak

topology. Indeed, weak limit of {ei} is 0. The proof above shows that | · | is

semicontinuous.
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Compact operators

DEFINITION: Precompact set is a set which has compact closure. A

compact operator is an operator which maps bounded sets to precompact.

EXAMPLE: Let A ∈ Hom(H,H) be an operator on Hilbert spaces and {ei}
an orthonormal basis in H. Let A(ei) = zi; assume that

∑
|zi|2 <∞. Then A

is compact.

Proof. Step 1: Let y(i) = αj(i)ej be a sequence of points in a unit ball.

Replacing y(i) by a subsequence, we may assume that y(i) weakly converges

to y.

Step 2: Then

lim
i
A(y(i)) = lim

i
lim
n
A

 n∑
j=1

αj(i)

 = lim
n

n∑
j=1

αjA(ei)

and this sequence converges in the usual topology on H, because αj are

bounded and
∑
i |A(ei)|2 is bounded.
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Compact operators and weak convergence

THEOREM: Let A : H −→H be a compact operator. Then A maps any

weakly convergent sequence to a convergent one.

Proof: Let {yi} be a sequence which weakly converges to y. Replacing

{yi} by a subsequence, we may assume that A(yi) converges to z. Then

limi g(A(yi), v) = g(z, v) for any v ∈ H. However,

lim
i
g(A(yi), v) = lim

i
g(yi, A

∗(v)) = g(y,A∗(v)) = g(A(y), v).

Then g(z, v) = g(A(y), v) for all v ∈ H, giving z = A(y).

REMARK: Converse is also true: you can characterize a compact oper-

ator as one which maps weakly convergent sequences to convergent.

Indeed, unit ball is weakly compact, as we have shown, hence its image is

precompact for any map which takes the weakly convergent sequences to

convergent.
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Tensor product of Hilbert spaces (reminder)

DEFINITION: Let H,H ′ be two Hilbert spaces. The tensor product H ⊗H ′

has a natural scalar product which is non-complete. Its completion H⊗̂H ′ is

called completed tensor product of H and H ′.

REMARK: Let {ei}, {e′i} be orthonormal bases in H,H ′. Then H⊗̂H ′ is all

series
∑
iαijei ⊗ e′j with

∑
i,j |αij|2 <∞.

REMARK: The natural map H⊗̂H∗ Φ−→ Hom(H,H) is not surjective.

Indeed, the identity operator
∑
i ei ⊗ e∗i does not belong to the completion of

H ⊗H∗, because the series 1 + 1 + 1 + 1 + ... does not converge.

PROPOSITION: Let Φ ∈ H⊗̂H∗, and A : H −→H be the corresponding

operator. Then A is compact.

Proof: Φ = αijei ⊗ ej with
∑
i,j |αij|2 < ∞, hence A(ei) =

∑
j αijej satisfies∑

i,j |αij|2 <∞. Then it is compact as shown above.
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Spectral theorem

THEOREM: (Spectral theorem for self-adjoint operators)
Let A : H −→H be a compact self-adjoint operator on a Hilbert space.
Then A can be diagonalized in a certain orthonormal basis e1, e2, ..., with
limiαi = 0.

Proof. Step 1: The eigenvalues converge to 0 because A is compact. Let
B ⊂ H be the unit ball, and X the closure of A(B). Denote by x ∈ X the
vector where |x| is maximal. We shall prove that x = A(z). To finish the proof
of Spectral Theorem it would suffice to show that z is an eigenvector
and A(z⊥) ⊂ z⊥.

Step 2: Let zi ∈ B be a sequence such that limiA(zi) = x. Replacing zi
by a subsequence, we may assume that zi weakly converges to z ∈ B. Then
A(z) = x, because A maps weakly convergent sequences to convergent. This
implies that x ∈ imA.

Step 3: Let z ∈ H be an element of the unit sphere such that A(z) = x. Then
|A(z)| = ‖A‖. Since A is self-adjoint, g(A(z), A(z)) = g(A2(z), z) = ‖A‖2.
Since g(A2(z), z) = |z||A2(z)| cosϕ, where ϕ is an angle between x and A(x),
the equality g(A2(z), z) = |z||A(z)| implies that z and A2(z) are proportional,
hence x is an eigenvector for A2.
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Spectral theorem (2)

THEOREM: (Spectral theorem for self-adjoint operators)

Let A : H −→H be a compact self-adjoint operator on a Hilbert space.

Then A can be diagonalized in a certain orthonormal basis e1, e2, ..., with

limiαi = 0.

Steps 2-3: We have shown that there exists a vector z ∈ H in a unit ball

such that |A(z)| = ‖A‖. Moreover, z is an eigenvector of A2.

Step 4: Now, the function q(z) = |A(z)|2 reaches its maximum on z ∈ B,

hence d
dεq(z + εv) = 2g(A(z), A(v)) = 0 for all v ∈ TzS, where S ⊂ H is

the unit sphere. This gives z⊥ ⊃ {v ∈ H | g(A(v), A(z)) = 0}. Since

g(A(v), A(z)) = g(v,A2(z)), we obtain z⊥ ⊃ A2(z⊥). We proved that A2 is

diagonal in an orthonormal basis.

Step 5: This implies that H is an orthogonal direct sum of eigenspaces for A2,

which are finite-dimensional for non-zero eigenvalues, because A2 is compact.

Since A and A2 commute, on each of these eigenspaces A acts as an adjoint

operator, and we can apply the finite-dimensional spectral theorem.
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Orthogonal operators on tensor square

THEOREM: Let U be an orthogonal operator on a Hilbert space H. Then

the following are equivalent:

(i) U has no eigenvectors in H.

(ii) U (acting diagonally) has no eigenvectors in H⊗̂H with eigenvalue

1.

Proof. Step 1: Implication (ii) ⇒ (i) is clear. Indeed, a tensor square of

a finite-dimensional space V with action of U contains a U-invariant vector

corresponding to the Euclidean product g ∈ Sym2(V ∗) = Sym2(V ) ⊂ V ⊗ V .

Step 2: The converse implication follows from the spectral theorem. In-

deed, let Φ ∈ H⊗̂H be a U-invariant vector, and A1 : H −→H be the

corresponding U-invariant compact operator. Then A := A∗1A1 satisfies

g(A∗1A1x, x) = g(A1x,A1x), hence it is a non-zero compact self-adjoint op-

erator, which is diagonalizable with finite-dimensional eigenspaces. Since U

preserves these eigenspaces, it has non-zero eigenvectors.
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