Teoria Ergódica Diferenciável

lecture 14: Mixing, weak mixing, ergodicity

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, November 1, 2017

Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space *H* is a set of pairwise orthogonal vectors $\{x_{\alpha}\}$ which satisfy $|x_{\alpha}| = 1$, and such that *H* is the closure of the subspace generated by the set $\{x_{\alpha}\}$.

THEOREM: Any Hilbert space has a basis, and all such bases are countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls with centers in x_{α} and radius $\varepsilon < 2^{-1/2}$ don't intersect, which means that the second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

Real Hilbert spaces (reminder)

DEFINITION: A Euclidean space is a vector space over \mathbb{R} equipped with a positive definite scalar product g.

DEFINITION: Real Hilbert space is a complete, infinite-dimensional Euclidean space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space *H* is a set of pairwise orthogonal vectors $\{x_{\alpha}\}$ which satisfy $|x_{\alpha}| = 1$, and such that *H* is the closure of the subspace generated by the set $\{x_{\alpha}\}$.

THEOREM: Any real Hilbert space has a basis, and all such bases are countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls with centers in x_{α} and radius $\varepsilon < 2^{-1/2}$ don't intersect, which means that the second countability axiom is not satisfied.

THEOREM: All real Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

Koopman operators

DEFINITION: Let (M, μ) be a space with finite measure, and $T : M \longrightarrow M$ a measurable map preserving measure. The triple (M, μ, T) is called **dynamical system**. The map T defines a isometric embedding $T^* : L^2(M, \mu) \longrightarrow L^2(M, \mu)$ on the space of square-integrable functions, called **the Koopman operator**.

DEFINITION: Two dynamical systems (M, μ, T) and (M_1, μ_1, T_1) are **spectral equivalent** if there exists an invertible map $\varphi : L^2(M, \mu) \longrightarrow L^2(M_1, \mu_1)$ such that the following diagram is commutative

$$\begin{array}{cccc} L^{2}(M,\mu) & \xrightarrow{\varphi} & L^{2}(M_{1},\mu_{1}) \\ T^{*} & & & & \downarrow T_{1}^{*} \\ L^{2}(M,\mu) & \xrightarrow{\varphi} & L^{2}(M_{1},\mu_{1}) \end{array}$$

(this is the same as to say that the equivalence φ exchanges the Koopman operators T^* and T_1^*).

DEFINITION: A property A of dynamical system is called **spectral invariant** if for each two spectral invariant systems (M, μ, T) and (M_1, μ_1, T_1) , the property A holds for $(M, \mu, T) \Leftrightarrow$ it holds for (M_1, μ_1, T_1) .

REMARK: We shall see today that **ergodicity is a spectral invariant**.

Adjoint maps (reminder)

EXERCISE: Let (H,g) be a Hilbert space. Show that the map $x \longrightarrow g(x, \cdot)$ defines an isomorphism $H \longrightarrow H^*$.

DEFINITION: Let $A : H \longrightarrow H$ be a continuous linear endomorphism of a Hilbert space (H,g). Then $\lambda \longrightarrow \lambda(A(\cdot))$ map $A^* : H^* \longrightarrow H^*$. Identifying H and H^* as above, we interpret A^* as an endomorphism of H. It is called **adjoint endomorphism (Hermitian adjoint** in Hermitian Hilbert spaces).

REMARK: The map A^* satisfies $g(x, A(y)) = g(A^*(x), y)$. This relation is often taken as a definition of the adjoint map.

DEFINITION: An operator $U : H \longrightarrow H$ is **orthogonal** if g(x, y) = g(U(x), U(y)) for all $x, y \in H$.

CLAIM: An operator U is orthogonal if and only if $U^*(U(x)) = x$ for all x.

Proof: Indeed, orthogonality is equivalent to $g(x,y) = g(U^*U(x),y)$, which is equivalent to $U^*U = Id$ because the form $g(z, \cdot)$ is non-zero for non-zero z.

Orthogonal maps and direct sum decompositions (reminder)

LEMMA: Let $U : H \longrightarrow H$ be an invertible orthogonal map. Denote by H^U the kernel of 1 - U, that is, the space of U-invariant vectors, and let H_1 be the closure of the image of 1 - U. Then $H = H^U \oplus H_1$ is an orthogonal direct sum decomposition.

Proof: Let $x \in H^U$. Then

$$(U^* - 1)(x) = (U^* - 1)U(x) = (1 - U)x = 0.$$

This gives $g(x, (U-1)y) = g((U^*-1)x, y) = 0$, hence $x \perp H_1$. Conversely, any vector x which is orthogonal to H_1 satisfies $0 = g(x, (U-1)y) = g((U^*-1)x, y)$, giving

$$0 = (U^* - 1)(x) = (U^* - 1)U(x) = (1 - U)x.$$

Von Neumann erodic theorem (reminder)

Corollary 1: Let $U : H \longrightarrow H$ be an invertible orthogonal map, and $U_n := \frac{1}{n} \sum_{i=0}^{n-1} U^i(x)$. Then $\lim_n U_n(x) = P(x)$, for all $x \in H$ where P is orthogonal projection to H^U .

Proof: By the previous lemma, it suffices to show that $\lim_n U_n = 0$ on H_1 . However, the vectors of form x = (1 - U)(y) are dense in H_1 , and for such x we have $U_n(x) = U_n(1 - U)(y) = \frac{1 - U^n}{n}(y)$, and it converges to 0 because $||U^n|| = 1$.

THEOREM: Let (M, μ) be a measure space and $T : M \longrightarrow M$ a map preserving the measure. Consider the space $L^2(M)$ of functions $f : M \longrightarrow \mathbb{R}$ with f^2 integrable, and let $T^* : L^2(M) \longrightarrow L^2(M)$ map f to T^*f . Then the series $T_n(f) := \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i (f)$ converges in $L^2(M)$ to a T^* -invariant function.

Proof: Corollary 1 implies that $T_n(f)$ converges to P(f).

Ergodic measures and Cesàro sums

From now on, all measure spaces we consider are tacitly assumed to have finite measure.

REMARK: a. e. means "almost everywhere", that is, outside of a measure 0 set.

THEOREM: Let (M, μ) be a space with (finite) measure, and $T: M \longrightarrow M$ a measurable map. Then T is ergodic if and only if for any bounded function $f: M \longrightarrow \mathbb{R}$, the function $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i f$ is constant a. e.

Proof: By von Neumann ergodic theorem, $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i f$ is *T*-invariant, hence constant a.e. whenever *T* is μ -ergodic. Conversely, if *T* is not μ -ergodic, there exists a bounded, measurable *T*-invariant function *f* which is not constant a.e., and $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i f = f$ is not constant.

REMARK: Ergodicity would follow if $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i f = \text{const}$ for all $f = \chi_A$, where $A \subset M$ is a measurable subset, and χ_A its characteristic function.

COROLLARY: A dynamical system (M, μ, T) is ergodic if and only if the eigenspace of the corresponding Koopman operator T^* : $L^2(M, \mu) \longrightarrow L^2(M, \mu)$ with eigenvalue 1 is 1-dimensional.

Convergence in density

DEFINITION: The (asymptotic) density of a subset $J \subset \mathbb{Z}^{\geq 1}$ is the limit $\lim_{N} \frac{|J \cap [1,N]|}{N}$. A subset $J \subset \mathbb{Z}^{\geq 1}$ has density **1** if $\lim_{N} \frac{|J \cap [1,N]|}{N} = 1$.

DEFINITION: A sequence $\{a_i\}$ of real numbers converges to a in density if there exists a subset $J \subset \mathbb{Z}^{\geq 1}$ of density 1 such that $\lim_{i \in J} a_i = a$. The convergence in density is denoted by $\text{Dlim}_i a_i = a$.

PROPOSITION: (Koopman-von Neumann, 1932) Let $\{a_i\}$ be a sequence of bounded non-negative numbers, $a_i \in [0, C]$. Then convergence to 0 in density is equivalent to the convergence of Cesàro sums:

$$\operatorname{Dlim}_{i} a_{i} = 0 \Leftrightarrow \lim_{N} \frac{1}{N} \sum_{i=1}^{N} a_{i} = 0$$

Proof: See the next slide

M. Verbitsky

Convergence in density (2)

Proof. Step 1: If $\text{Dlim } a_i = 0$, then for $J \subset \mathbb{Z}^{\geq 1}$ of density 1, one has $\lim_{i \in J} a_i = 0$, which gives

$$\lim_{N} \frac{1}{N} \sum_{i=1}^{N} a_{i} = \lim_{N} \frac{1}{N} \sum_{i \in [1,N] \cap J} a_{i} + \lim_{N} \frac{1}{N} \sum_{i \in [1,N] \setminus J} a_{i}$$

The first of the limits on RHS converges to 0 because $\lim_{i\in J} a_i = 0$, and the second limit is bounded by $\lim_{N} C^{\frac{|[1,N] \setminus |}{N}}$, converging to 0. The same argument proves that density convergence always implies Cesàro convergence for bounded sequences.

Step 2: Conversely, if $\lim_{N} \frac{1}{N} \sum_{i=1}^{N} a_i = 0$, let L_k be the set of all n such that $a_n \ge \frac{1}{k}$. Clearly, $L_1 \subset L_2 \subset \dots$ The density of each L_k is 0 because $\frac{|L_k \cap [1,N]|}{N} \leq k \frac{1}{N} \sum_{i=1}^N a_i$, and the later term converges to 0. Define a sequence $n_k \leq n_{k+1} \leq \dots$ in such a way that $\frac{|L_k \cap [1,n]|}{n} < \frac{1}{k}$ for all $n \geq n_k$, and let $L := \bigcup_k (L_k \cap [n_k, \infty[))$. Denote by J the set $\mathbb{Z}^{\geq 1} \setminus L$. Then $\lim_{i \in J} a_i = 0$, because on each interval $[n_k, n_{k+1}]$, for all $i \notin L$ one has $i \notin L_k$, giving $a_i \leqslant 1/k$.

Step 3: It remains to show that L has density 0. Let $m \in [n_{k-1}, n_k]$. Then $\frac{|L \cap [0,m]|}{m} \leqslant \frac{|L_k \cap [0,m]|}{m} \leqslant \frac{1}{k}$, hence $\lim_m \frac{|L \cap [0,m]|}{m} = 0$.

Mixing, weak mixing, ergodicity

DEFINITION: Let (M, μ, T) be a dynamic system, with μ a probability measure. We say that

(i) *T* is ergodic if $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \int_{M} (T^*)^i (\chi_A) \chi_B \mu = \mu(A) \mu(B)$, for all measurable sets $A, B \subset M$.

(ii) T is weak mixing if $\underset{i \to \infty}{\text{Dlim}}(T^*)^i(\chi_A)\chi_B = \mu(A)\mu(B)$.

(iii) T is mixing, or strongly mixing if $\lim_{i\to\infty} \int (T^*)^i (\chi_A) \chi_B = \mu(A) \mu(B)$.

REMARK: The first condition is equivalent to the usual definition of ergodicity by the previous remark. Indeed, from (usual) ergodicity it follows that $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i (\chi_A) = \mu(A)$, which gives $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i (\chi_A) \chi_B =$ $\mu(A)\chi(B)$ and the integral of this function is precisely $\mu(A)\mu(B)$. Conversely, if $\lim_{n} \int (T^*)^i (\chi_A)\chi_B$ depends only on the measure of *B*, the function $\lim_{n} \int (T^*)^i (\chi_A)$ is constant, hence *T* is ergodic in the usual sense.

REMARK: Clearly, (iii) \Rightarrow (i) \Rightarrow (i) (the last implication follows because the density convergence implies the Cesàro convergence).

Mixing, weak mixing, ergodicity: spectral invariance

Notice that the space generated by χ_A is C^0 -dense in the space of all measurable functions. Therefore, in the definition of mixing/weak mixing/ergodicity we may replace χ_A , χ_B by arbitrary L^2 -integrable functions. Denote by $\langle \cdot, \cdot \rangle$ the scalar product on the Hilbert space $L^2(M, \mu)$.

DEFINITION: Let (M, μ, T) be a dynamic system. We say that

- (i) T is ergodic if $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \langle T^i(f), g \rangle \langle 1, 1 \rangle = \langle f, 1 \rangle \langle g, 1 \rangle$ for all $f, g \in L^2(M, \mu)$.
- (ii) T is weak mixing if $\underset{n\to\infty}{\text{Dlim}}\langle T^n(f),g\rangle\langle 1,1\rangle = \langle f,1\rangle\langle g,1\rangle$.

(iii) T is mixing, or strongly mixing, if $\lim_{n\to\infty} \langle T^n(f), g \rangle \langle 1, 1 \rangle = \langle f, 1 \rangle \langle g, 1 \rangle$.

REMARK: Notice that these three notions are spectral invariants. Indeed, the weakest of them already implies ergodicity, that is, the eigenspace of eigenvalue 1 of T is 1-dimensional. This implies that T determines the constant function in $L^2(M, \mu)$. However, the conditions (i)-(iii) are expressed in terms of 1, T and the scalar product, hence spectral invariant.

Mixing: probabilistic interpretation

DEFINITION: Probability space is the set M, elements of which are called **outcomes**, equipped with a σ -algebra of subsets, called **events**, and a probability measure μ . In this interpretation, the measure of an event $U \subset M$ is its probability. A random variable is a measurable map $f : M \longrightarrow \mathbb{R}$. Its expected value is $E(f) := \int_M f\mu$. The correlation of random variables f, g is C(f,g) := E(fg) - E(f)E(g).

REMARK: Mixing means precisely that $\lim_i (C(T^i f, g)) = 0$, that is, for any two random variables f and g, the correlation of $T^i f$ and g converges to 0.

REMARK: Let $A \subset M$ be an event. Conditional expectation of the random variable f is $E_A(f) := \frac{\int_A f\mu}{\mu(A)}$. This is an expectation of f under the condition that the event A happened. The conditional expectation $E_A(\chi_B) := \frac{\mu(A \cap B)}{\mu(A)}$ is probability that B happens under the condition that A happened.

Correlation between events $A, B \subset M$ is the measure of their independence:

$$E_A(\chi_B) = E(\chi_B) \Leftrightarrow \frac{\mu(A \cap B)}{\mu(A)} = \mu(B) \Leftrightarrow \mu(A \cap B) = \mu(A)\mu(B).$$

if correlation is 0, this means that the probability of A is entirely unaffected by B.

Mixing: coin tossing

DEFINITION: Let P be a finite set, $P^{\mathbb{Z}}$ the product of \mathbb{Z} copies of P, $\Sigma \subset \mathbb{Z}$ a finite subset, and $\pi_{\Sigma} : P^{\mathbb{Z}} \longrightarrow P^{|\Sigma|}$ projection to the corresponding components. Cylindrical sets are sets $C_R := \pi_{\Sigma}^{-1}(R)$, where $R \subset P^{|\Sigma|}$ is any subset.

REMARK: For Bernoulli space, a complement to an cylindrical set is again an open set, and the cylindrical sets form a Boolean algebra.

DEFINITION: Bernoulli measure on
$$P^{\mathbb{Z}}$$
 is μ such that $\mu(C_R) := \frac{|R|}{|P|^{|\Sigma|}}$.

REMARK: We consider $P^{\mathbb{Z}}$ as the set of outcomes of infinite sets of coin tossing. The corresponding events are observations of some of the tosses, and its measure is the probability of an event.

THEOREM: (Lebesque approximation theorem)

For each Lebesgue measurable set $S \subset P^{\mathbb{Z}}$ and $\varepsilon > 0$, there exists a cylindrical subset $C_R = \pi_{\Sigma}^{-1}(R)$ such that $\mu(C_R \Delta X) < \varepsilon$.

Proof: The σ -algebra of Lebesgue measurable sets is by definition a completion of the Boolean algebra of cylindrical sets.

Bernoulli shifts are mixing

DEFINITION: Bernoulli shift maps a sequence $a_{-n}, a_{-n+1}, ..., a_0, a_1, ...$ to the sequence $b_{-n}, b_{-n+1}, ..., b_0, b_1, ..., b_i = a_{i-1}$.

CLAIM: The corresponding \mathbb{Z} -action is (strongly) mixing on the Bernoulli space.

Proof. Step 1: Since the set of characteristic functions of cylindrical sets is dense, it suffices to prove the mixing for A, B cylindrical, $A = C_R = \pi_{\Sigma}^{-1}(R)$, $B = C_{R'} = \pi_{\Sigma'}^{-1}(R')$.

Step 2: Let $C_R = \pi_{\Sigma}^{-1}(R)$ and $C_{R'} = \pi_{\Sigma'}^{-1}(R')$ be two open sets, where $\Sigma \subset \mathbb{Z}$ and $\Sigma' \subset \mathbb{Z}$ don't intersect. Then $\mu(C_R \cap C_{R'}) = \mu(C_R)\mu(C_{R'})$: the corresponding correlations vanish. Indeed,

$$\mu(C_R \cap C_{R'}) = \frac{|R||R'|}{|P|^{|\Sigma|+|\Sigma'|}}.$$

This is intiutively clear, because different coin tossings are independent.

Step 3: For sufficiently big power T^N of the Bernoulli shift, the sets $\Sigma \subset \mathbb{Z}$ and $\Phi(\Sigma')$ don't intersect, which gives $C(T^N(C_R), C_{R'}) = 0$.