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Laurent power series

DEFINITION: Laurent power series is a function expressed as f(z) =
e %

REMARK: A holomorphic function ¢ : C* — C uniquely determines its
Laurent power series. Indeed, residue of zFy in 0 is v/—1 2wa_;_1.
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Laurent power series: function in an annulus

THEOREM: (Laurent theorem)
Let f be a holomorphic function on an annulus (that is, a ring)

R={z | a<]|z|<p}

Then f can be expressed as a Laurent power series f(z) = Y,c7 2'a;
converging in R.

Proof: Same as Cauchy formula: for an annulus with components of the
boundary denoted as 8R+ and OR_, one has

/a f()dz /a f2d= _ o Tt

Ry z—a R z—a
This gives
2nV/=1f(@) =Y a' [ fEHF - e [ ()2
because -1 = 2715 q(az"1)? for |z| > |a| and -1 = a1 5,50(a"12) for
Z—a 1>=0 z—a 120
1z| < |a]. =

REMARK: This theorem remains valid if « = 0 and 5 = .
3
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Affine coordinates on CP1

DEFINITION: We identify CP! with the set of pairs z : y defined up to
equivalence = : y ~ Ax . Ay, for each A € C*. This representation is called
homogeneous coordimates. Affine coordinatesarel:zforz #0, z =y/x
and z:1 for y # 0, z = x/y. The corresponding gluing functions are given by

the map z — 2~ 1.

DEFINITION: Meromorphic function is a quotient f/g, where f,g are
holomorphic and g # 0.

REMARK: A holomorphic map C —s CP! is the same as a pair of maps
f g up to equivalence f: g~ fh:gh. In other words, holomorphic maps
C —s CP1l are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element CC" Z c PSL(2,0)
acts as x : y—ax + by : cx + dy. Therefore, in affine coordinates it acts as
. . az+b

" cz+d-
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Mobius transforms

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CPl. Mobius group is the group of Mdbius transforms.

REMARK: The group PGL(2,C) acts on CPl holomorphially.
The following theorem will be proven in the next slide.

THEOREM: The natural map from PGL(2,C) to the group of Maobius
transforms is an isomorphism.

REMARK: Let ¢ : C* — C be a holomorphic function, and ¢ = ;.7 2'a;

its Laurent power series. Then v(z) := ¢(z~1) has Laurent polynomial
Y =3 ez 7 a;.

This implies

Claim 1: Let ¢ : CP!—CPl be a holomorphic automorphism, ¢q :

C —s CP1! its restriction to the chart z : 1, and ¢ : C —s CP1! its restric-
tion 1 : z. We consider ¢g, 9o as meromorphic functions on C. Then
poo = oz~ 1)1

5
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Mobius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP)
of Mobius transforms is an isomorphism.

Proof. Step 1: Let ¢ € Aut(CP!). Since PSL(2,C) acts transitively on
pairs of points z #= y Iin cpl, by composing ¢ with an appropriate element in
PGL(2,C) we can assume that ¢(0) = 0 and ¢(c0) = oco. This means that
we may consider the restrictions ¢g and ¢~ Of ¢ to the affine charts as a
holomorphic functions on these charts, ¢g, pooc : C — C.

Step 2: Let pg = Y;>0aiz’, a1 # 0. Claim 1 gives

poo(2) = po(z )t =ar2(1+ 3 La) 7
i>2 41
Unless a; = 0O for all ¢ > 2, this Laurent series has singularities in O and
cannot be holomorphic. Therefore ¢g is a linear function, and it belongs
to PGL(2,C). =

Lemma 1: Let ¢ be a Mdbius transform fixing oo € CPL. Then o(2) = az+b
for some a,bc C and all z =2z:1eCPL

Proof: Let A € PGL(2,C) be a map acting on C = CP1\co as parallel trans-
port mapping ¢(0) to 0. Then po A is a Moebius transform which fixes oo
and 0. As shown in Step 2 above, it is a linear function. =

6
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Circles in CP1

DEFINITION: A circle in S2 is an orbit of a 1-parametric subgroup S! c
GL(2,C).

REMARK: Any subgroup sl ¢ PGL(2,C) acts by isometry for an ap-
propriate Hermitian metric. Indeed, we can pick any Hermitian metric on
C2 and average it with the Sl-action.

REMARK: Consider a pseudo-Hermitian form h on V = C2 of signature
(1,1). Let hy be a positive definite Hermitian form on V. There exists
a basis z,y € V such that hy = vV/-12®z7++V/-1y®y (that is, z,y is
orthonormal with respect to hy) and h = —/—1laz®z 4+ /-1 By ® y, with
a > 0, 8 < 0 real numbers. Then {z | h(z,z) = 0} is invariant under the
rotation z,y —s x,eV 1%, hence it is a circle.
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MoDbius transform preserves circles

REMARK: We have just shown that the zero set of a pseudo-Hermitian
form is a circle in CP1L,.

LEMMA: All circles S ¢ CP! can be obtained this way.

Proof: Using exponent map and the the Jordan normal form, we obtain that
Sl c GL(2,C) can be given by a matrix

v—1mnt 0
(&
p(t) = ( 0 e\/—lwmt) 3

for some n,m € Z. Let z1, 2> be the corresponding coordinates on C2. Choose
h = al|z1]|2 —b|2>|? in such a way that h(z) := h(z,%) = 0 for some z € S. Then
hlg = 0. The set of points v € CPl such that h(v) = 0 is a circle, hence
S={veCP! | h(v) =0}. m

PROPOSITION: The action of PGL(2,C) on CP! maps circles to cir-
cles.

Proof: Any matrix A € GL(2,C) maps pseudo-Hermitian forms to pseudo-
Hermitian forms, hence it maps their zero sets to their zero sets. However,
the zero sets of pseudo-Hermitian forms are circles, as shown above. m

3
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Some low-dimensional Lie group isomorphisms

DEFINITION: For a Lie group such G as GL(n), SL(n), U(p,q), ... denote
by PGL(n), PSL(n), PU(p,q), the quotient G/Z, where Z is the center of G.

DEFINITION: Let SO1(1,2) be the connected component of the group of
orthogonal matrices on a 3-dimensional space equipped with a scalar product
of signature (1,2), and U(1,1) the group of complex linear maps C2 —s C2
preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R) and SO1(1,2) are isomor-
phic.

Proof: Isomorphism PU(1,1) = SOT(1,2) will be established later today. To
see PSL(2,R) = SOT(1,2), consider the Killing form x on the Lie algebra
sl(2,R), a,b— Tr(ab). Check that it has signature (1,2). Then the
image of SL(2,R) in automorphisms of its Lie algebra is SO(sl(2,R), k) =
SO+(1,2). Both groups are 3-dimensional, and differential of the map

W PSL(2,R) —s SOT(1,2)

IS an isomorphism. Then W is surjective and has discrete kernel. However,
the kernel subgroup has to be central, and PSL(2,R) has no center by
construction. m

O
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Transitive action is determined by a stabilizer of a point (reminder)

Lemma 2: Let M = G/H be a homogeneous space, and WV : G; —G a
homomorphism such that G1 acts on M transitively and St;(G1) = Stz (G).
Then G = G.

Proof: Since any element in ker W belongs to St,(G7) = Stz (G) C G, the
homomorphism W is injective. It remais only to show that W is surjective.

Let ¢ € G. Since G171 acts on M transitively, gg1(x) = x for some g1 € G1.
Then gg1 € Stz (G1) = St (G) CimG1. Thisgives g€ G1. =

10
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Group of conformal automorphisms of the disk is PU(1,1) (reminder)

REMARK: The group PU(1,1) Cc PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {l € CP! | h(i,1) >
0} by holomorphic automorphisms. Indeed, PGL(2,C) acts conformally on
cprl.

COROLLARY: Let A C C be the unit disk, Aut(A) the group of its con-
formal automorphisms, and W : PU(1,1) — Aut(A) the map constructed
above. Then W is a group isomorphism.

Proof: We use Lemma 2. Both groups act on A transitively, hence it suffices
only to check that St,.(PU(1,1)) = S! and Stiz(Aut(A)) = SL. The first
isomorphism is clear, because the space of unitary automorphisms fixing a
vector v is U(vt). The second isomorphism follows from Schwartz lemma
(prove it!). =

11
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Upper half-plane

REMARK: The map z— —+/—1 (2 — 1)1 induces a diffeomorphism from
the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(A) acts on the upper half-plane H as
2 Ay atb \where a.b.c,d € R, and det <a b) > 0.

cz+d’ c d

REMARK: The group of such A is naturally identified with PSL(2,R) C
PSL(2,C).

Proof: The group PSL(2,R) preserves the line imz = 0, hence acts on H by
conformal automorphisms. The stabilizer of a point is S1 (prove it). Now,
Lemma 2 implies that PSL(2,R) = PU(1,1). m

REMARK: We have shown that H = SO(l,Q)/Sl, hence H is conformally
equivalent to the hyperbolic space.

12
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Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with an
PSL(2,R)-invariant metric. By constructtion, t is isometric to the Poincare
disk and to the hyperbolic space form.

THEOREM: Let (z,y) be the usual coordinates on the upper half-plane H.

2 2
Then the Riemannian structure s on H is written as s = const%.
Proof: Since the complex structure on H is the standard one and all Hermitian
structures are proportional, we obtain that s = u(dz2+dy?), where p € C°(H).
It remains to find u, using the fact that s is PSL(2,R)-invariant.

For each a € R, the parallel transport x — x4 a fixes s, hence p is a function

of y. For any XA € R>9, the map H,(z) = Az, being holomorphic, also fixes s;
since Hy (dz? + dy?) = \2dz? 4+ dy?, we have p(Az) = A 2u(z). m

13
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Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise
smooth path connecting = to y such that its length is equal to the geodesic
distance. Geodesic is a piecewise smooth path ~ such that for any = € ~
there exists a neighbourhood of = in v which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove
that an interval of a big circle of length < 7 is a minimising geodesic.

14
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Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight
lines and their images under the action of SL(2,R).

Proof. Step 1: Let a,b € H be two points satisfying Rea = Reb, and [ the line
connecting these two points. Denote by Il the orthogonal projection from H
to the vertical line connecting a to b. For any tangent vector v € 1,H, one has
|D7(v)| < |v|, and the equality means that v is vertical (prove it). Therefore,
a projection of a path v connecting a to b to [ has length < L(v), and
the equality is realized only if v is a straight vertical interval.

Step 2: For any points a,b in the Poincaré half-plane, there exists an
iIsometry mapping (a,b) to a pair of points (a1,b1) such that Re(a;) =
Re(b1). (Prove it!)

Step 3: Using Step 2, we prove that any geodesic v on a Poincaré half-
plane is obtained as an isometric image of a straight vertical line:
~v=v(vg), v €lso(H) = PSL(2,R) m

15
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Geodesics in Poincaré half-plane are circles

CLAIM: Let S be a circle or a straight line on a complex plane C = IR{Q, and
S; closure of its image in CP! inder the natural map z—1: 2. Then Sq is
a circle, and any circle in cPl is obtained this way.

Proof: The circle Sr(p) of radius r centered in p € C is given by equation
lp— z| = r, in homogeneous coordinates it is |px — z|2 = r|z|2. This is the zero
set of the pseudo-Hermitian form h(z, z) = |pxz — 2|2 — |z|?, hence it is a circle.
-

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight
lines and half-circles orthogonal to the line imz = 0 In the intersection
points.

Proof: We have shown that geodesics in the Poincaré half-plane are Mobius
transforms of straight lines orthogonal to imz = 0. However, any MOobius
transform preserves angles and maps circles or straight lines to circles or
straight lines. =
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