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Laurent power series

DEFINITION: Laurent power series is a function expressed as f(z) =∑
i∈Z z

iai

REMARK: A holomorphic function ϕ : C∗ −→ C uniquely determines its

Laurent power series. Indeed, residue of zkϕ in 0 is
√
−1 2πa−k−1.
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Laurent power series: function in an annulus

THEOREM: (Laurent theorem)

Let f be a holomorphic function on an annulus (that is, a ring)

R = {z | α < |z| < β}.

Then f can be expressed as a Laurent power series f(z) =
∑
i∈Z z

iai
converging in R.

Proof: Same as Cauchy formula: for an annulus with components of the

boundary denoted as ∂R+ and ∂R−, one has∫
∂R+

f(z)dz

z − a
−
∫
∂R−

f(z)dz

z − a
= 2π

√
−1 f(a),

This gives

2π
√
−1 f(a) =

∑
i>0

ai
∫
∂R+

f(z)(z−1)i+1 −
∑
i>0

a−i−1
∫
∂R−

f(z)zi

because 1
z−a = z−1∑

i>0(az−1)i for |z| > |a| and 1
z−a = a−1∑

i>0(a−1z)i for

|z| < |a|.

REMARK: This theorem remains valid if α = 0 and β =∞.
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Affine coordinates on CP1

DEFINITION: We identify CP1 with the set of pairs x : y defined up to

equivalence x : y ∼ λx : λy, for each λ ∈ C∗. This representation is called

homogeneous coordimates. Affine coordinates are 1 : z for x 6= 0, z = y/x

and z : 1 for y 6= 0, z = x/y. The corresponding gluing functions are given by

the map z −→ z−1.

DEFINITION: Meromorphic function is a quotient f/g, where f, g are

holomorphic and g 6= 0.

REMARK: A holomorphic map C−→ CP1 is the same as a pair of maps

f : g up to equivalence f : g ∼ fh : gh. In other words, holomorphic maps

C−→ CP1 are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element

(
a b
c d

)
∈ PSL(2,C)

acts as x : y −→ ax + by : cx + dy. Therefore, in affine coordinates it acts as

z −→ az+b
cz+d.
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Möbius transforms

DEFINITION: Möbius transform is a conformal (that is, holomorphic)
diffeomorphism of CP1. Möbius group is the group of Möbius transforms.

REMARK: The group PGL(2,C) acts on CP1 holomorphially.

The following theorem will be proven in the next slide.

THEOREM: The natural map from PGL(2,C) to the group of Möbius
transforms is an isomorphism.

REMARK: Let ϕ : C∗ −→ C be a holomorphic function, and ϕ =
∑
i∈Z z

iai
its Laurent power series. Then ψ(z) := ϕ(z−1) has Laurent polynomial
ψ =

∑
i∈Z z

−iai.

This implies

Claim 1: Let ϕ : CP1 −→ CP1 be a holomorphic automorphism, ϕ0 :
C−→ CP1 its restriction to the chart z : 1, and ϕ∞ : C−→ CP1 its restric-
tion 1 : z. We consider ϕ0, ϕ∞ as meromorphic functions on C. Then
ϕ∞ = ϕ0(z−1)−1.
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Möbius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Möbius transforms is an isomorphism.

Proof. Step 1: Let ϕ ∈ Aut(CP1). Since PSL(2,C) acts transitively on
pairs of points x 6= y in CP1, by composing ϕ with an appropriate element in
PGL(2,C) we can assume that ϕ(0) = 0 and ϕ(∞) = ∞. This means that
we may consider the restrictions ϕ0 and ϕ∞ of ϕ to the affine charts as a
holomorphic functions on these charts, ϕ0, ϕ∞ : C−→ C.

Step 2: Let ϕ0 =
∑
i>0 aiz

i, a1 6= 0. Claim 1 gives

ϕ∞(z) = ϕ0(z−1)−1 = a1z(1 +
∑
i>2

ai
a1
z−i)−1.

Unless ai = 0 for all i > 2, this Laurent series has singularities in 0 and
cannot be holomorphic. Therefore ϕ0 is a linear function, and it belongs
to PGL(2,C).

Lemma 1: Let ϕ be a Möbius transform fixing ∞ ∈ CP1. Then ϕ(z) = az+b
for some a, b ∈ C and all z = z : 1 ∈ CP1.
Proof: Let A ∈ PGL(2,C) be a map acting on C = CP1\∞ as parallel trans-
port mapping ϕ(0) to 0. Then ϕ ◦ A is a Moebius transform which fixes ∞
and 0. As shown in Step 2 above, it is a linear function.
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Circles in CP1

DEFINITION: A circle in S2 is an orbit of a 1-parametric subgroup S1 ⊂
GL(2,C).

REMARK: Any subgroup S1 ⊂ PGL(2,C) acts by isometry for an ap-

propriate Hermitian metric. Indeed, we can pick any Hermitian metric on

C2 and average it with the S1-action.

REMARK: Consider a pseudo-Hermitian form h on V = C2 of signature

(1,1). Let h+ be a positive definite Hermitian form on V . There exists

a basis x, y ∈ V such that h+ =
√
−1 x ⊗ x +

√
−1 y ⊗ y (that is, x, y is

orthonormal with respect to h+) and h = −
√
−1 αx ⊗ x +

√
−1 βy ⊗ y, with

α > 0, β < 0 real numbers. Then {z | h(z, z) = 0} is invariant under the

rotation x, y −→ x, e
√
−1 θy, hence it is a circle.
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Möbius transform preserves circles

REMARK: We have just shown that the zero set of a pseudo-Hermitian
form is a circle in CP1.

LEMMA: All circles S ⊂ CP1 can be obtained this way.

Proof: Using exponent map and the the Jordan normal form, we obtain that
S1 ⊂ GL(2,C) can be given by a matrix

ρ(t) =

e√−1 πnt 0

0 e
√
−1 πmt

 ,
for some n,m ∈ Z. Let z1, z2 be the corresponding coordinates on C2. Choose
h = a|z1|2− b|z2|2 in such a way that h(z) := h(z, z) = 0 for some z ∈ S. Then
h|S = 0. The set of points v ∈ CP1 such that h(v) = 0 is a circle, hence
S = {v ∈ CP1 | h(v) = 0}.

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-
cles.

Proof: Any matrix A ∈ GL(2,C) maps pseudo-Hermitian forms to pseudo-
Hermitian forms, hence it maps their zero sets to their zero sets. However,
the zero sets of pseudo-Hermitian forms are circles, as shown above.

8



Smooth ergodic theory, lecture 11 M. Verbitsky

Some low-dimensional Lie group isomorphisms

DEFINITION: For a Lie group such G as GL(n), SL(n), U(p, q), ... denote
by PGL(n), PSL(n), PU(p, q), the quotient G/Z, where Z is the center of G.

DEFINITION: Let SO+(1,2) be the connected component of the group of
orthogonal matrices on a 3-dimensional space equipped with a scalar product
of signature (1,2), and U(1,1) the group of complex linear maps C2 −→ C2

preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R) and SO+(1,2) are isomor-
phic.

Proof: Isomorphism PU(1,1) = SO+(1,2) will be established later today. To
see PSL(2,R) ∼= SO+(1,2), consider the Killing form κ on the Lie algebra
sl(2,R), a, b−→ Tr(ab). Check that it has signature (1,2). Then the
image of SL(2,R) in automorphisms of its Lie algebra is SO(sl(2,R), κ) =
SO+(1,2). Both groups are 3-dimensional, and differential of the map

Ψ : PSL(2,R)−→ SO+(1,2)

is an isomorphism. Then Ψ is surjective and has discrete kernel. However,
the kernel subgroup has to be central, and PSL(2,R) has no center by
construction.
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Transitive action is determined by a stabilizer of a point (reminder)

Lemma 2: Let M = G/H be a homogeneous space, and Ψ : G1 −→G a

homomorphism such that G1 acts on M transitively and Stx(G1) = Stx(G).

Then G1 = G.

Proof: Since any element in ker Ψ belongs to Stx(G1) = Stx(G) ⊂ G, the

homomorphism Ψ is injective. It remais only to show that Ψ is surjective.

Let g ∈ G. Since G1 acts on M transitively, gg1(x) = x for some g1 ∈ G1.

Then gg1 ∈ Stx(G1) = Stx(G) ⊂ imG1. This gives g ∈ G1.

10



Smooth ergodic theory, lecture 11 M. Verbitsky

Group of conformal automorphisms of the disk is PU(1,1) (reminder)

REMARK: The group PU(1,1) ⊂ PGL(2,C) of unitary matrices preserving a

pseudo-Hermitian form h of signature (1,1) acts on a disk {l ∈ CP1 | h(l, l) >

0} by holomorphic automorphisms. Indeed, PGL(2,C) acts conformally on

CP1.

COROLLARY: Let ∆ ⊂ C be the unit disk, Aut(∆) the group of its con-

formal automorphisms, and Ψ : PU(1,1)−→ Aut(∆) the map constructed

above. Then Ψ is a group isomorphism.

Proof: We use Lemma 2. Both groups act on ∆ transitively, hence it suffices

only to check that Stx(PU(1,1)) = S1 and Stx(Aut(∆)) = S1. The first

isomorphism is clear, because the space of unitary automorphisms fixing a

vector v is U(v⊥). The second isomorphism follows from Schwartz lemma

(prove it!).
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Upper half-plane

REMARK: The map z −→ −
√
−1 (z − 1)−1 induces a diffeomorphism from

the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(∆) acts on the upper half-plane H as

z
A−→ az+b

cz+d, where a, b, c, d ∈ R, and det

(
a b
c d

)
> 0.

REMARK: The group of such A is naturally identified with PSL(2,R) ⊂
PSL(2,C).

Proof: The group PSL(2,R) preserves the line im z = 0, hence acts on H by

conformal automorphisms. The stabilizer of a point is S1 (prove it). Now,

Lemma 2 implies that PSL(2,R) = PU(1,1).

REMARK: We have shown that H = SO(1,2)/S1, hence H is conformally

equivalent to the hyperbolic space.
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Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with an

PSL(2,R)-invariant metric. By constructtion, t is isometric to the Poincare

disk and to the hyperbolic space form.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H.

Then the Riemannian structure s on H is written as s = constdx
2+dy2

y2 .

Proof: Since the complex structure on H is the standard one and all Hermitian

structures are proportional, we obtain that s = µ(dx2+dy2), where µ ∈ C∞(H).

It remains to find µ, using the fact that s is PSL(2,R)-invariant.

For each a ∈ R, the parallel transport x−→ x+ a fixes s, hence µ is a function

of y. For any λ ∈ R>0, the map Hλ(x) = λx, being holomorphic, also fixes s;

since Hλ(dx2 + dy2) = λ2dx2 + dy2, we have µ(λx) = λ−2µ(x).
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Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise

smooth path connecting x to y such that its length is equal to the geodesic

distance. Geodesic is a piecewise smooth path γ such that for any x ∈ γ

there exists a neighbourhood of x in γ which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove

that an interval of a big circle of length 6 π is a minimising geodesic.
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Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight

lines and their images under the action of SL(2,R).

Proof. Step 1: Let a, b ∈ H be two points satisfying Re a = Re b, and l the line

connecting these two points. Denote by Π the orthogonal projection from H
to the vertical line connecting a to b. For any tangent vector v ∈ TzH, one has

|Dπ(v)| 6 |v|, and the equality means that v is vertical (prove it). Therefore,

a projection of a path γ connecting a to b to l has length 6 L(γ), and

the equality is realized only if γ is a straight vertical interval.

Step 2: For any points a, b in the Poincaré half-plane, there exists an

isometry mapping (a, b) to a pair of points (a1, b1) such that Re(a1) =

Re(b1). (Prove it!)

Step 3: Using Step 2, we prove that any geodesic γ on a Poincaré half-

plane is obtained as an isometric image of a straight vertical line:

γ = v(γ0), v ∈ Iso(H) = PSL(2,R)
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Geodesics in Poincaré half-plane are circles

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and

S1 closure of its image in CP1 inder the natural map z −→ 1 : z. Then S1 is

a circle, and any circle in CP1 is obtained this way.

Proof: The circle Sr(p) of radius r centered in p ∈ C is given by equation

|p− z| = r, in homogeneous coordinates it is |px− z|2 = r|x|2. This is the zero

set of the pseudo-Hermitian form h(x, z) = |px− z|2− |x|2, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight

lines and half-circles orthogonal to the line im z = 0 in the intersection

points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius

transforms of straight lines orthogonal to im z = 0. However, any Möbius

transform preserves angles and maps circles or straight lines to circles or

straight lines.
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