Teoria Ergódica Diferenciável

lecture 10: Group of conformal automorphisms

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, October 18, 2017

Riemannian manifolds (reminder)

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: For any $x, y \in M$, and any piecewise smooth path γ : $[a, b] \longrightarrow M$ connecting x and y, consider **the length** of γ defined as $L(\gamma) = \int_{\gamma} |\frac{d\gamma}{dt}| dt$, where $|\frac{d\gamma}{dt}| = h(\frac{d\gamma}{dt}, \frac{d\gamma}{dt})^{1/2}$. Define **the geodesic distance** as $d(x, y) = \inf_{\gamma} L(\gamma)$, where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality and defines a metric on *M*.

EXERCISE: Prove that this metric induces the standard topology on M.

EXAMPLE: Let $M = \mathbb{R}^n$, $h = \sum_i dx_i^2$. Prove that the geodesic distance coincides with d(x, y) = |x - y|.

EXERCISE: Using partition of unity, **prove that any manifold admits a Riemannian structure.**

Conformal structures (reminder)

DEFINITION: Let h, h' be Riemannian structures on M. These Riemannian structures are called **conformally equivalent** if h' = fh, where f is a positive smooth function.

DEFINITION: Conformal structure on M is a class of conformal equivalence of Riemannian metrics.

DEFINITION: A Riemann surface is a 2-dimensional oriented manifold equipped with a conformal structure.

DEFINITION: Let $I : TM \longrightarrow TM$ be an endomorphism of a tangent bundle satisfying $I^2 = -$ Id. Then I is called **almost complex structure operator**, and the pair (M, I) **an almost complex manifold**.

CLAIM: Let M be a 2-dimensional oriented conformal manifold. Then M admits a unique orthogonal almost complex structure in such a way that the pair x, I(x) is positively oriented. Conversely, an almost complex structure uniquely determines the conformal structure nd orientation.

Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A Riemannian form Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant scalar product on T_xM . For any $y \in M$ obtained as y = g(x), consider the form Φ_y on T_yM obtained as $\Phi_y := g(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in St_x(G)$. Since Φ_x is h-invariant, **the metric** Φ_y **is independent from the choice of** g.

We proved

THEOREM: Homogeneous Riemannian forms on M = G/H are in bijective correspondence with isotropy invariant spalar products on T_xM , for any $x \in M$.

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/O(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 hyperbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique *G*-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g' be two *G*-invariant symmetric 2-forms. Since S^{n-1} is an orbit of *G*, we have g(x,x) = g(y,y) for any $x, y \in S^{n-1}$. Multiplying g' by a constant, we may assume that g(x,x) = g'(x,x) for any $x \in S^{n-1}$. Then $g(\lambda x, \lambda x) = g'(\lambda x, \lambda x)$ for any $x \in S^{n-1}$, $\lambda \in \mathbb{R}$; however, all vectors can be written as λx .

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied.

REMARK: From now on, all space forms are assumed to be homogeneous Riemannian manifolds.

Schwartz lemma (reminder)

CLAIM: (maximum principle) Let f be a holomorphic function defined on an open set U. Then f cannot have strict maxima in U. If f has non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let $f : \Delta \to \Delta$ be a map from disk to itself fixing 0. Then $|f'(0)| \leq 1$, and equality can be realized only if $f(z) = \alpha z$ for some $\alpha \in \mathbb{C}$, $|\alpha| = 1$.

Proof: Consider the function $\varphi := \frac{f(z)}{z}$. Since f(0) = 0, it is holomorphic, and since $f(\Delta) \subset \Delta$, on the boundary $\partial \Delta$ we have $|\varphi||_{\partial \Delta} \leq 1$. Now, the **maximum principle implies that** $|f'(0)| = |\varphi(0)| \leq 1$, and equality is realized only if $\varphi = \text{const.}$

Conformal automorphisms of the disk act transitively

CLAIM: Let $\Delta \subset \mathbb{C}$ be the unit disk. Then the group $Aut(\Delta)$ of its holomorphic automorphisms acts on Δ transitively.

Proof. Step 1: Let $V_a(z) = \frac{z-a}{1-\overline{a}z}$ for some $a \in \Delta$. Then $V_a(0) = -a$. To prove transitivity, it remains to show that $V_a(\Delta) = \Delta$.

Step 2: For |z| = 1, we have

$$|V_a(z)| = |V_a(z)||z| = \left|\frac{z\overline{z} - a\overline{z}}{1 - \overline{a}z}\right| = \left|\frac{1 - a\overline{z}}{1 - \overline{a}z}\right| = 1.$$

Therefore, V_a preserves the circle. Maximum principle implies that V_a maps its interior to its interior.

Step 3: To prove invertibility, we interpret V_a as an element of $PGL(2, \mathbb{C})$.

Transitive action is determined by a stabilizer of a point

Lemma 1: Let M = G/H be a homogeneous space, and $\Psi : G_1 \longrightarrow G$ a homomorphism such that G_1 acts on M transitively and $St_x(G_1) = St_x(G)$. **Then** $G_1 = G$.

Proof: Since any element in ker Ψ belongs to $St_x(G_1) = St_x(G) \subset G$, the homomorphism Ψ is injective. It remais only to show that Ψ is surjective.

Let $g \in G$. Since G_1 acts on M transitively, $gg_1(x) = x$ for some $g_1 \in G_1$. Then $gg_1 \in St_x(G_1) = St_x(G) \subset \operatorname{im} G_1$. This gives $g \in G_1$.

Group of conformal automorphisms of the disk is PU(1,1)

REMARK: The group $PU(1,1) \subset PGL(2,\mathbb{C})$ of unitary matrices preserving a pseudo-Hermitian form h of signature (1,1) acts on a disk $\{l \in \mathbb{C}P^1 \mid h(l,l) > 0\}$ by holomorphic automorphisms. Indeed, $PGL(2,\mathbb{C})$ acts conformally on $\mathbb{C}P^1$.

COROLLARY: Let $\Delta \subset \mathbb{C}$ be the unit disk, Aut(Δ) the group of its conformal automorphisms, and Ψ : $PU(1,1) \rightarrow Aut(\Delta)$ the map constructed above. Then Ψ is a group isomorphism.

Proof: We use Lemma 1. Both groups act on Δ transitively, hence it suffices only to check that $\operatorname{St}_x(PU(1,1)) = S^1$ and $\operatorname{St}_x(\operatorname{Aut}(\Delta)) = S^1$. The first isomorphism is clear, because the space of unitary automorphisms fixing a vector v is $U(v^{\perp})$. The second isomorphism follows from Schwartz lemma (prove it!).

Conformal automorphism and the Poincare metric on the disc

COROLLARY: Let *h* be a homogeneous metric on $\Delta = PU(1,1)/S^1$. Then (Δ, h) is conformally equivalent to $(\Delta, \text{flat metric})$.

Proof: The group $Aut(\Delta) = PU(1,1)$ acts on Δ holomorphically, that is, preserving the conformal structure of the flat metric. However, the homogeneous conformal structure on $PU(1,1)/S^1$ is unique for the same reason the homogeneous metric is unique up to a contant multiplier (prove it).

COROLLARY: All conformal automorphisms of a disk are isometries.

Proof: The group $Aut(\Delta)$ acts by homotheties, because an $Aut(\Delta)$ -invariant metric on a space G/S^1 is unique up to homothety. However, a homothety of a disk is an isometry by Schwartz lemma.

DEFINITION: Poincare metric on a disc $\Delta \subset \mathbb{C}$ is any Aut(Δ)-invariant metric, where Aut(Δ) is the group of conformal isometries.

M. Verbitsky

Laurent power series: function in an annulus

THEOREM: (Laurent theorem)

Let f be a holomorphic function on an annulus (that is, a ring)

 $R = \{ z \mid \alpha < |z| < \beta \}.$

Then f can be expressed as a Laurent power series $f(z) = \sum_{i \in \mathbb{Z}} z^i a_i$ converging in R.

Proof: Same as Cauchy formula: for an annulus with components of the boundary denoted as ∂R_+ and ∂R_- , one has

$$\int_{\partial R_+} \frac{f(z)dz}{z-a} - \int_{\partial R_-} \frac{f(z)dz}{z-a} = 2\pi\sqrt{-1} f(a),$$

This gives

$$2\pi\sqrt{-1} f(a) = \sum_{i \ge 0} a^i \int_{\partial R_+} f(z)(z^{-1})^{i+1} - \sum_{i \ge 0} a^{-i-1} \int_{\partial R_-} f(z)z^i$$

because $\frac{1}{z-a} = z^{-1} \sum_{i \ge 0} (az^{-1})^i$ for $|z| > |a|$ and $\frac{1}{z-a} = a^{-1} \sum_{i \ge 0} (a^{-1}z)^i$ for $|z| < |a|$.

REMARK: This theorem remains valid if $\alpha = 0$ and $\beta = \infty$.

Affine coordinates on $\mathbb{C}P^1$

DEFINITION: We identify $\mathbb{C}P^1$ with the set of pairs x : y defined up to equivalence $x : y \sim \lambda x : \lambda y$, for each $\lambda \in \mathbb{C}^*$. This representation is called **homogeneous coordimates**. Affine coordinates are 1 : z for $x \neq 0$, z = y/x and z : 1 for $y \neq 0$, z = x/y. The corresponding gluing functions are given by the map $z \longrightarrow z^{-1}$.

DEFINITION: Meromorphic function is a quotient f/g, where f,g are holomorphic and $g \neq 0$.

REMARK: A holomorphic map $\mathbb{C} \longrightarrow \mathbb{C}P^1$ is the same as a pair of maps f:g up to equivalence $f:g \sim fh:gh$. In other words, holomorphic maps $\mathbb{C} \longrightarrow \mathbb{C}P^1$ are identified with meromorphic functions on \mathbb{C} .

REMARK: In homogeneous coordinates, an element $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbb{C})$ acts as $x : y \longrightarrow ax + by : cx + dy$. Therefore, in affine coordinates it acts as $z \longrightarrow \frac{az+b}{cz+d}$.

Möbius transforms

DEFINITION: Möbius transform is a conformal (that is, holomorphic) diffeomorphism of $\mathbb{C}P^1$.

REMARK: The group $PGL(2, \mathbb{C})$ acts on $\mathbb{C}P^1$ holomorphially.

The following theorem will be proven next lecture.

THEOREM: The natural map from $PGL(2, \mathbb{C})$ to the group of Möbius transforms is an isomorphism.