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Riemannian manifolds (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold
which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x, y ∈M , and any piecewise smooth path γ : [a, b]−→M

connecting x and y, consider the length of γ defined as L(γ) =
∫
γ |
dγ
dt |dt, where

|dγdt | = h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ),
where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines a metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Conformal structures (reminder)

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

DEFINITION: A Riemann surface is a 2-dimensional oriented manifold

equipped with a conformal structure.

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

CLAIM: Let M be a 2-dimensional oriented conformal manifold. Then M

admits a unique orthogonal almost complex structure in such a way

that the pair x, I(x) is positively oriented. Conversely, an almost complex

structure uniquely determines the conformal structure nd orientation.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A Riemannian form Φ on a homogeneous manifold M = G/H

is called invariant if it is mapped to itself by all diffeomorphisms which come

from g ∈ G.

REMARK: Let Φx be an isotropy invariant scalar product on TxM . For

any y ∈ M obtained as y = g(x), consider the form Φy on TyM obtained as

Φy := g(Φ). The choice of g is not unique, however, for another g′ ∈ G which

satisfies g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φx is h-invariant,

the metric Φy is independent from the choice of g.

We proved

THEOREM: Homogeneous Riemannian forms on M = G/H are in bi-

jective correspondence with isotropy invariant spalar products on TxM,

for any x ∈M .
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold

of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: SO(1, n)/O(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a

unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g′ be two G-invariant symmetric 2-forms. Since Sn−1 is an

orbit of G, we have g(x, x) = g(y, y) for any x, y ∈ Sn−1. Multiplying g′ by

a constant, we may assume that g(x, x) = g′(x, x) for any x ∈ Sn−1. Then

g(λx, λx) = g′(λx, λx) for any x ∈ Sn−1, λ ∈ R; however, all vectors can be

written as λx.

COROLLARY: Let M = G/H be a simply connected space form. Then M

admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous

lemma can be applied.

REMARK: From now on, all space forms are assumed to be homoge-

neous Riemannian manifolds.
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Schwartz lemma (reminder)

CLAIM: (maximum principle) Let f be a holomorphic function defined

on an open set U . Then f cannot have strict maxima in U. If f has

non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let f : ∆−→∆ be a map from disk to itself

fixing 0. Then |f ′(0)| 6 1, and equality can be realized only if f(z) = αz

for some α ∈ C, |α| = 1.

Proof: Consider the function ϕ := f(z)
z . Since f(0) = 0, it is holomorphic,

and since f(∆) ⊂ ∆, on the boundary ∂∆ we have |ϕ||∂∆ 6 1. Now, the

maximum principle implies that |f ′(0)| = |ϕ(0)| 6 1, and equality is realized

only if ϕ = const.
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Conformal automorphisms of the disk act transitively

CLAIM: Let ∆ ⊂ C be the unit disk. Then the group Aut(∆) of its

holomorphic automorphisms acts on ∆ transitively.

Proof. Step 1: Let Va(z) = z−a
1−az for some a ∈ ∆. Then Va(0) = −a. To

prove transitivity, it remains to show that Va(∆) = ∆.

Step 2: For |z| = 1, we have

|Va(z)| = |Va(z)||z| =
∣∣∣∣zz − az1− az

∣∣∣∣ =
∣∣∣∣1− az1− az

∣∣∣∣ = 1.

Therefore, Va preserves the circle. Maximum principle implies that Va maps

its interior to its interior.

Step 3: To prove invertibility, we interpret Va as an element of PGL(2,C).
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Transitive action is determined by a stabilizer of a point

Lemma 1: Let M = G/H be a homogeneous space, and Ψ : G1 −→G a

homomorphism such that G1 acts on M transitively and Stx(G1) = Stx(G).

Then G1 = G.

Proof: Since any element in ker Ψ belongs to Stx(G1) = Stx(G) ⊂ G, the

homomorphism Ψ is injective. It remais only to show that Ψ is surjective.

Let g ∈ G. Since G1 acts on M transitively, gg1(x) = x for some g1 ∈ G1.

Then gg1 ∈ Stx(G1) = Stx(G) ⊂ imG1. This gives g ∈ G1.
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Group of conformal automorphisms of the disk is PU(1,1)

REMARK: The group PU(1,1) ⊂ PGL(2,C) of unitary matrices preserving a

pseudo-Hermitian form h of signature (1,1) acts on a disk {l ∈ CP1 | h(l, l) >

0} by holomorphic automorphisms. Indeed, PGL(2,C) acts conformally on

CP1.

COROLLARY: Let ∆ ⊂ C be the unit disk, Aut(∆) the group of its con-

formal automorphisms, and Ψ : PU(1,1)−→ Aut(∆) the map constructed

above. Then Ψ is a group isomorphism.

Proof: We use Lemma 1. Both groups act on ∆ transitively, hence it suffices

only to check that Stx(PU(1,1)) = S1 and Stx(Aut(∆)) = S1. The first

isomorphism is clear, because the space of unitary automorphisms fixing a

vector v is U(v⊥). The second isomorphism follows from Schwartz lemma

(prove it!).
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Conformal automorphism and the Poincare metric on the disc

COROLLARY: Let h be a homogeneous metric on ∆ = PU(1,1)/S1. Then

(∆, h) is conformally equivalent to (∆,flat metric).

Proof: The group Aut(∆) = PU(1,1) acts on ∆ holomorphically, that is,

preserving the conformal structure of the flat metric. However, the homoge-

neous conformal structure on PU(1,1)/S1 is unique for the same reason the

homogeneous metric is unique up to a contant multiplier (prove it).

COROLLARY: All conformal automorphisms of a disk are isometries.

Proof: The group Aut(∆) acts by homotheties, because an Aut(∆)-invariant

metric on a space G/S1 is unique up to homothety. However, a homothety

of a disk is an isometry by Schwartz lemma.

DEFINITION: Poincare metric on a disc ∆ ⊂ C is any Aut(∆)-invariant

metric, where Aut(∆) is the group of conformal isometries.
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Laurent power series: function in an annulus

THEOREM: (Laurent theorem)

Let f be a holomorphic function on an annulus (that is, a ring)

R = {z | α < |z| < β}.

Then f can be expressed as a Laurent power series f(z) =
∑
i∈Z z

iai
converging in R.

Proof: Same as Cauchy formula: for an annulus with components of the

boundary denoted as ∂R+ and ∂R−, one has∫
∂R+

f(z)dz

z − a
−
∫
∂R−

f(z)dz

z − a
= 2π

√
−1 f(a),

This gives

2π
√
−1 f(a) =

∑
i>0

ai
∫
∂R+

f(z)(z−1)i+1 −
∑
i>0

a−i−1
∫
∂R−

f(z)zi

because 1
z−a = z−1∑

i>0(az−1)i for |z| > |a| and 1
z−a = a−1∑

i>0(a−1z)i for

|z| < |a|.

REMARK: This theorem remains valid if α = 0 and β =∞.
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Affine coordinates on CP1

DEFINITION: We identify CP1 with the set of pairs x : y defined up to

equivalence x : y ∼ λx : λy, for each λ ∈ C∗. This representation is called

homogeneous coordimates. Affine coordinates are 1 : z for x 6= 0, z = y/x

and z : 1 for y 6= 0, z = x/y. The corresponding gluing functions are given by

the map z −→ z−1.

DEFINITION: Meromorphic function is a quotient f/g, where f, g are

holomorphic and g 6= 0.

REMARK: A holomorphic map C−→ CP1 is the same as a pair of maps

f : g up to equivalence f : g ∼ fh : gh. In other words, holomorphic maps

C−→ CP1 are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element

(
a b
c d

)
∈ PSL(2,C)

acts as x : y −→ ax + by : cx + dy. Therefore, in affine coordinates it acts as

z −→ az+b
cz+d.
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Möbius transforms

DEFINITION: Möbius transform is a conformal (that is, holomorphic)

diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphially.

The following theorem will be proven next lecture.

THEOREM: The natural map from PGL(2,C) to the group of Möbius

transforms is an isomorphism.
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