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Riemannian manifolds (reminder)

DEFINITION: Let h € Sym2T*M be a symmetric 2-form on a manifold
which satisfies h(x,z) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x,y € M, and any piecewise smooth path ~ : [a,b] — M
connecting xz and y, consider the length of ~v defined as L(vy) = J~ |‘é—¥|dt, where

9| = (%Y, 9)1/2. Define the geodesic distance as d(z,y) = infy L(v),

where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines a metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M =R", h =), da:i2. Prove that the geodesic distance
coincides with d(z,y) = |z — y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Conformal structures (reminder)

DEFINITION: Let h,h’ be Riemannian structures on M. These Riemannian
structures are called conformally equivalent if A’ = fh, where f is a positive
smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-
lence of Riemannian metrics.

DEFINITION: A Riemann surface is a 2-dimensional oriented manifold
equipped with a conformal structure.

DEFINITION: Let I : T'TM — T M be an endomorphism of a tangent bundle
satisfying I[2 = —1Id. Then I is called almost complex structure operator,
and the pair (M,I) an almost complex manifold.

CLAIM: Let M be a 2-dimensional oriented conformal manifold. Then M
admits a unique orthogonal almost complex structure in such a way
that the pair x,I(x) is positively oriented. Conversely, an almost complex
structure uniquely determines the conformal structure nd orientation.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St.(G) ={g9g€ G | g(x) =} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St;(G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to ¢g(x) identifies M
with the space of conjugacy classes G/H. =

REMARK: Let g(x) =y. Then St;(G)J9 = Sty(G): all the isotropy groups
are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, ¢ € M and St;(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of St;(G) on T, M.

DEFINITION: A Riemannian form ® on a homogeneous manifold M = G/H
is called invariant if it is mapped to itself by all diffeomorphisms which come
from g € G.

REMARK: Let &, be an isotropy invariant scalar product on T,M. For
any y € M obtained as y = g(x), consider the form &, on TyM obtained as
®, := g(P). The choice of g is not unique, however, for another ¢’ € G which
satisfies ¢’(x) = y, we have g = ¢’h where h € St.(G). Since &, is h-invariant,
the metric &, is independent from the choice of g.

We proved

THEOREM: Homogeneous Riemannian forms on M = G/H are in bi-
jective correspondence with isotropy invariant spalar products on 7, M,
foranyze M. m
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: S™ (an n-dimensional sphere), equipped with an
action of the group SO(n 4+ 1) of rotations

zero curvature: R" (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/O(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g,¢ be two G-invariant symmetric 2-forms. Since S 1 is an
orbit of G, we have g(z,z) = ¢(y,y) for any z,y € S*~1. Multiplying ¢ by
a constant, we may assume that g(z,z) = ¢'(z,z) for any z € S"~1. Then
gz, \x) = ¢z, \z) for any = € S 1, X\ € R; however, all vectors can be
written as \z. m

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =

REMARK: From now on, all space forms are assumed to be homoge-
neous Riemannian manifolds.
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Poincaré-Koebe uniformization theorem

DEFINITION: A Riemannian manifold of constant curvature is a Rie-
mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-
mann surface. Then M admits a unique complete metric of constant
curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X
by a discrete group of isometries I C Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally
equivalent to a space form.
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Lie groups and their properties

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-
invariant vector fields. Adjoint representation of G is the standard action
of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n),
etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the centre of G.
EXERCISE: Prove that the center of PSL(n,R), PSO(n,R), etc. is trivial.

EXERCISE: Prove that a discrete normal subgroup of SL(n,R) is central
(commutes with everything).

EXERCISE: Let V. G — G1 be a homomorphism of connected Lie groups
of the same dimension with dW surjective. Prove that W is a covering
(quotient by a discrete subgroup).

Hint: Use the inverse function theorem.
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Some low-dimensional Lie group isomorphisms

DEFINITION: Let SO1(1,2) be the connected component of the group of
orthogonal matrices on a 3-dimensional space equipped with a scalar product
of signature (1,2), and U(1,1) the group of complex linear maps C2 —s C2
preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R) and SOT(1,2) are isomor-
phic.

Proof: Isomorphism PU(1,1) = SO7T(1,2) will be established later. To
see PSL(2,R) = SO7T(1,2), consider the Killing form x on the Lie alge-
bra sl(2,R), a,b — Tr(ab). Check that it has signature (1,2). Then the
image of SL(2,R) in automorphisms of its Lie algebra is SO(sl(2,R), k) =
SO+(1,2). Both groups are 3-dimensional, and differential of the map

W PSL(2,R) —s SOT(1,2)

IS an isomorphism. Then W is surjective and has discrete kernel. However,
the kernel subgroup has to be central, and PSL(2,R) has no center by
construction. m
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Holomorphic functions

DEFINITION: Let I : TM — T M be an endomorphism of a tangent bundle
satisfying [2 = —1Id. Then I is called almost complex structure operator,
and the pair (M, I) an almost complex manifold.

EXAMPLE: M = C", with complex coordinates 2z, = z; + v/—1 y;, and
I(d/dx;) = d/dy;, 1(d/dy;) = —d/dzx;.

DEFINITION: A function f: M — C on an almost complex manifold is
called holomorphic if df is C-linear.
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Holomorphic functions on C"

THEOREM: Let f: M — C be a differentiable function on an open subset
M C C, with the natural almost complex structure. Then the following are
equivalent.
(1) f is holomorphic.
(2) f is conformal in all points where df is non-zero, and preserves the
orientation.
(3) f is expressed as a sum of Taylor series around any point z € M:

1=0 )
(here we assume that the complex number t satisfies |t| < €, where £ depends
on f and z).

Proof: Taylor series decomposition on a line is implied by the Cauchy
formula:

f(z)dz _
oA z—a 27“/_—1]0(&)’

where A C Cis a disk, a € A any point, and z coordinate on C. Indeed, in this

case, 2mv/—1 f(a) = Yis0a fon f(2)(z71) L, because -1 = 271y g(az™ 1)L
=
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Cauchy formula

Let's prove Cauchy formula, using Stokes’ theorem. Since the space C-linear
1-forms on C is 1-dimensional, df Adz = 0 for any holomorphic function on C.
This gives

CLAIM: A function on a disk A C C is holomorphic if and only if the form
n .= fdz is closed (that is, satisfies dn =0). =

Now, let Sz be a radius e circle around a point a € A, A. its interior, and
Ag ;= A\As. Stokes' theorem gives

0 — / d (f(Z)dz> _ f(z)dz n f(2)dz
ANG)

Se z—a oA zZ — a

y
<z — Qa

hence Cauchy formula would follow if we show that Iir% I fg%)jz = 2nv—1f(a).
£—> €

Assuming for simplicity a = 0 and parametrizing the circle Sz by eev—lt, we
obtain

OL fleeV2D) v Try

Sg < O 86\’_1t
_ 2 feeV 1) V=Tt ., _ [T V=1t
= [ Y e dt—/O FleeV=1H /2T dt

as e tends to 0, f(eeV~11) tends to f(0), and this integral goes to 2m/—1 f(0).
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Schwartz lemmma

CLAIM: (maximum principle) Let f be a holomorphic function defined
on an open set U. Then f cannot have strict maxima in U. If f has
non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.
LEMMA: (Schwartz lemma) Let f: A — A be a map from disk to itself

fixing 0. Then |f/(0)| < 1, and equality can be realized only if f(z) = az
for some a € C, |of = 1.

Proof: Consider the function ¢ := f(zz). Since f(0) = 0O, it is holomorphic,
and since f(A) C A, on the boundary 0A we have |p|llgan < 1. Now, the
maximum principle implies that |f/(0)| = |¢(0)| < 1, and equality is realized
only if ¢ = const. =
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