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Riemannian manifolds

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold
which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x, y ∈M , and any piecewise smooth path γ : [a, b]−→M

connecting x and y, consider the length of γ defined as L(γ) =
∫
γ |
dγ
dt |dt, where

|dγdt | = h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ),
where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines a metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Conformal structures

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

DEFINITION: A Riemann surface is a 2-dimensional oriented manifold

equipped with a conformal structure.
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Almost complex structures

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

CLAIM: Let M be a 2-dimensional oriented conformal manifold. Then M

admits a unique orthogonal almost complex structure in such a way

that the pair x, I(x) is positively oriented. Conversely, an almost complex

structure uniquely determines the conformal structure nd orientation.

Proof: The almost complex structure is π
2 degrees counterclockwise rotation;

it is clearly determined by the conformal structure and orientation. To prove

that the conformal structure is recovered from the almost complex structure,

define the action of U(1) on TM as follows: ρ(t) = etI. Any I-invariant metric

is also ρ-invariant, hence constant on circles which are its orbits. Therefore

all such metrics are proportional.
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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A Riemannian form Φ on a homogeneous manifold M = G/H

is called invariant if it is mapped to itself by all diffeomorphisms which come

from g ∈ G.

REMARK: Let Φx be an isotropy invariant scalar product on TxM . For

any y ∈ M obtained as y = g(x), consider the form Φy on TyM obtained as

Φy := g(Φ). The choice of g is not unique, however, for another g′ ∈ G which

satisfies g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φx is h-invariant,

the metric Φy is independent from the choice of g.

We proved

THEOREM: Homogeneous Riemannian forms on M = G/H are in bi-

jective correspondence with isotropy invariant spalar products on TxM,

for any x ∈M .
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Space forms

DEFINITION: Simply connected space form is a homogeneous manifold

of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a

unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g′ be two G-invariant symmetric 2-forms. Since Sn−1 is an

orbit of G, we have g(x, x) = g(y, y) for any x, y ∈ Sn−1. Multiplying g′ by

a constant, we may assume that g(x, x) = g′(x, x) for any x ∈ Sn−1. Then

g(λx, λx) = g′(λx, λx) for any x ∈ Sn−1, λ ∈ R; however, all vectors can be

written as λx.

COROLLARY: Let M = G/H be a simply connected space form. Then M

admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous

lemma can be applied.

REMARK: From now on, all space forms are assumed to be homoge-

neous Riemannian manifolds.
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