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Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian
space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xq} which satisfy |zqo| = 1, and such that H is the closure
of the subspace generated by the set {zq}.

THEOREM: Any Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls
with centers in =, and radius € < 2—1/2 don't intersect, which means that the
second countability axiom is not satisfied. =

THEOREM: AIll Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis. =
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Real Hilbert spaces

DEFINITION: A Euclidean space is a vector space over R equipped with a
positive definite scalar product g.

DEFINITION: Real Hilbert space is a complete, infinite-dimensional Eu-
clidean space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xq} which satisfy |zo| = 1, and such that H is the closure
of the subspace generated by the set {z.}.

THEOREM: Any real Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls
with centers in =, and radius € < 2-1/2 don't intersect, which means that the
second countability axiom is not satisfied. m

THEOREM: All real Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis. =
3
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Adjoint maps

EXERCISE: Let (H,g) be a Hilbert space. Show that the map = — g(«, -)
defines an isomorphism H — H*.

DEFINITION: Let A: H — H be a continuous linear endomorphism of a
Hilbert space (H,g). Then A — A(A(-)) map A* . H* — H*. Identifying
H and H* as above, we interpret A* as an endomorphism of H. It is called
adjoint endomorphism (Hermitian adjoint in Hermitian Hilbert spaces).

REMARK: The map A* satisfies g(z, A(y)) = g(A*(x),y). This relation is
often taken as a definition of the adjoint map.

DEFINITION: An operator U : H — H isorthogonal if g(x,y) = g(U(x),U(y))
for all x,y € H.

CLAIM: An invertible operator U is orthogonal if and only if U* = U1.
Proof: Indeed, orthogonality is equivalent to ¢g(z,y) = g(U*U(x),vy), which is

equivalent to U*U = Id because the form g(z,-) is non-zero for non-zero z. =
4
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Orthogonal maps and direct sum decompositions

LEMMA: Let U: H— H be an invertible orthogonal map. Denote by HY
the kernel of 1 — U, that is, the space of U-invariant vectors, and let H; be
the closure of the image of 1 —U. Then H = HY ¢ Hy is an orthogonal
direct sum decomposition.

Proof: Let z €¢ HY. Then
(U*—1)(z) = (U*=-DU@)=WU"t-1U@&)=((1-U)z=0.

This gives g(x, (U —1)y) = g((U* - 1)x,y) = 0, hence x 1 Hy. Conversely, any
vector z which is orthogonal to H; satisfies 0 = g(z, (U—-1)y) = g((U*—=1)x,vy),
giving

0= (U*-1)(z)=U*-1U(z)=WU"T-1DU@) =(1-0U)z
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Von Neumann erodic theorem

Corollary 1: Let U : H — H be an invertible orthogonal map, and U, :=
%Zf‘:—é U'(z). Then lim, U,(z) = P(x), for all z € H where P is orthogonal
projection to HV.

Proof:. By the previous lemma, it suffices to show that Iim, U, = 0 on Hj.
However, the vectors of form x = (1 — U)(y) are dense in Hqy, and for such
x we have Up(z) = Upn(1 —U)(y) = 1_nUn(y), and it converges to O because
[U"]=1. =

THEOREM: Let (M,u) be a measure space and T': M — M a map pre-
serving the measure. Consider the space L2(M) of functions f : M — R with
f2 integrable, and let T* : L2(M) — L?(M) map f to T*f. Then the series
To(f) := 22 5(T%)(f) converges in L?(M) to a T*-invariant function.

Proof: Corollary 1 implies that T,,(f) converges to P(f). m



Smooth ergodic theory, lecture 7 M. Verbitsky

The Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F' :
M — M a continuous map preserving measure. The “stable foliation” is
an equivalence relation on M, with z ~ y when lim; d(F"™(xz), F"(y)) = 0. The
“leaves” of stable foliation are the equivalence classes.

THEOREM: (Hopf Argument) Any measurable, F-invariant function is
constant on the leaves of stable foliation outside of a measure O set.

Proof: Let A(f) = Iimn%zg”:—é(ﬁ’i)*f be the map defined above. Since
A(f) = f for any F-invariant f, it suffices to prove that A(f) is constant on
leaves of the stable foliation only for f € im A. The Lipschitz L2-integrable
functions are dense in L1(M) by Stone-Weierstrass. Therefore it suffices
to show that A(f) is constant on leaves of the stable foliation when f is

C-Lipschitz for some C' > 0 and square integrable.

For any sequence «o; € R converging to 0, the sequence %Z?:_& «; also con-
verges to 0. Therefore, whenever xz ~ y, one has

A(f) (@) — A ) =1lim > f(F'(z)) — f(F'(y)) =0
i=0

because o; = |f(F'(z)) — f(F'(y))| < Cd(F'(x), F*(y)) converges to 0. m
{
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Stable and unstable foliations

DEFINITION: Let M be a metric space with a Borel measure and F' :
M — M a homeomorphism preserving measure. The “unstable foliation”
is a stable foliation for F—1.

DEFINITION: The map F' is called pseudo-Anosov if any leaf of stable
foliation intersects any leaf of unstable foliation.

COROLLARY: A pseudo-Anosov map F: M — M is always ergodic.

Proof: F is ergodic if all F-invariant f € L2(M) are constant. However,
al such f are constant on leaves of stable foliation and leaves on unstable
foliation and these leaves intersect. m

EXAMPLE: (Anosov diffeomorphism)

Let A: T2 — T2 be a linear map of a torus defined by A € SL(2,7), with
real eigenvalues o > 1 and 8 €]0, 1[, The eigenspace corresponding to 3 gives
a stable foliation, the eigenspace corresponding to o the unstable foliation,
hence A iIs ergodic.
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Arnold’s cat map

DEFINITION: The Arnold’s cat map is A : T2 — T2 defined by A €

SL(2,7),
2 1
4= [1 1] |
The eigenvalues of A are roots of det(¢tld —A) = (t—2)(t—1)—1 =t2—3¢t—1.
This is a quadratic equation with roots a4+ = 3i2‘/§. On the vectors tangent

to the eigenspace of a_, the map A™ acts as (a_)", hence the stable foliation
IS tangent to these vectors. Similarly, unstable foliation is tangent to the
eigenspace of a.




