Teoria Ergódica Diferenciável

lecture 7: von Neumann ergodic theorem

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, October 6, 2017

Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space *H* is a set of pairwise orthogonal vectors $\{x_{\alpha}\}$ which satisfy $|x_{\alpha}| = 1$, and such that *H* is the closure of the subspace generated by the set $\{x_{\alpha}\}$.

THEOREM: Any Hilbert space has a basis, and all such bases are countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls with centers in x_{α} and radius $\varepsilon < 2^{-1/2}$ don't intersect, which means that the second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

Real Hilbert spaces

DEFINITION: A Euclidean space is a vector space over \mathbb{R} equipped with a positive definite scalar product g.

DEFINITION: Real Hilbert space is a complete, infinite-dimensional Euclidean space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space *H* is a set of pairwise orthogonal vectors $\{x_{\alpha}\}$ which satisfy $|x_{\alpha}| = 1$, and such that *H* is the closure of the subspace generated by the set $\{x_{\alpha}\}$.

THEOREM: Any real Hilbert space has a basis, and all such bases are countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls with centers in x_{α} and radius $\varepsilon < 2^{-1/2}$ don't intersect, which means that the second countability axiom is not satisfied.

THEOREM: All real Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

Adjoint maps

EXERCISE: Let (H,g) be a Hilbert space. Show that the map $x \longrightarrow g(x, \cdot)$ defines an isomorphism $H \longrightarrow H^*$.

DEFINITION: Let $A : H \longrightarrow H$ be a continuous linear endomorphism of a Hilbert space (H,g). Then $\lambda \longrightarrow \lambda(A(\cdot))$ map $A^* : H^* \longrightarrow H^*$. Identifying H and H^* as above, we interpret A^* as an endomorphism of H. It is called **adjoint endomorphism (Hermitian adjoint** in Hermitian Hilbert spaces).

REMARK: The map A^* satisfies $g(x, A(y)) = g(A^*(x), y)$. This relation is often taken as a definition of the adjoint map.

DEFINITION: An operator $U : H \longrightarrow H$ is orthogonal if g(x, y) = g(U(x), U(y)) for all $x, y \in H$.

CLAIM: An invertible operator U is orthogonal if and only if $U^* = U^{-1}$.

Proof: Indeed, orthogonality is equivalent to $g(x,y) = g(U^*U(x),y)$, which is equivalent to $U^*U = \text{Id}$ because the form $g(z, \cdot)$ is non-zero for non-zero z.

Orthogonal maps and direct sum decompositions

LEMMA: Let $U : H \longrightarrow H$ be an invertible orthogonal map. Denote by H^U the kernel of 1 - U, that is, the space of U-invariant vectors, and let H_1 be the closure of the image of 1 - U. Then $H = H^U \oplus H_1$ is an orthogonal direct sum decomposition.

Proof: Let $x \in H^U$. Then

$$(U^* - 1)(x) = (U^* - 1)U(x) = (U^{-1} - 1)U(x) = (1 - U)x = 0.$$

This gives $g(x, (U-1)y) = g((U^*-1)x, y) = 0$, hence $x \perp H_1$. Conversely, any vector x which is orthogonal to H_1 satisfies $0 = g(x, (U-1)y) = g((U^*-1)x, y)$, giving

$$0 = (U^* - 1)(x) = (U^* - 1)U(x) = (U^{-1} - 1)U(x) = (1 - U)x.$$

Von Neumann erodic theorem

Corollary 1: Let $U : H \longrightarrow H$ be an invertible orthogonal map, and $U_n := \frac{1}{n} \sum_{i=0}^{n-1} U^i(x)$. Then $\lim_n U_n(x) = P(x)$, for all $x \in H$ where P is orthogonal projection to H^U .

Proof: By the previous lemma, it suffices to show that $\lim_n U_n = 0$ on H_1 . However, the vectors of form x = (1 - U)(y) are dense in H_1 , and for such x we have $U_n(x) = U_n(1 - U)(y) = \frac{1 - U^n}{n}(y)$, and it converges to 0 because $||U^n|| = 1$.

THEOREM: Let (M, μ) be a measure space and $T : M \longrightarrow M$ a map preserving the measure. Consider the space $L^2(M)$ of functions $f : M \longrightarrow \mathbb{R}$ with f^2 integrable, and let $T^* : L^2(M) \longrightarrow L^2(M)$ map f to T^*f . Then the series $T_n(f) := \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i (f)$ converges in $L^2(M)$ to a T^* -invariant function.

Proof: Corollary 1 implies that $T_n(f)$ converges to P(f).

M. Verbitsky

The Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F: $M \longrightarrow M$ a continuous map preserving measure. The "stable foliation" is an equivalence relation on M, with $x \sim y$ when $\lim_i d(F^n(x), F^n(y)) = 0$. The "leaves" of stable foliation are the equivalence classes.

THEOREM: (Hopf Argument) Any measurable, *F*-invariant function is constant on the leaves of stable foliation outside of a measure 0 set.

Proof: Let $A(f) := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} (F^i)^* f$ be the map defined above. Since A(f) = f for any *F*-invariant *f*, it suffices to prove that A(f) is constant on leaves of the stable foliation only for $f \in \operatorname{im} A$. The Lipschitz L^2 -integrable functions are dense in $L^1(M)$ by Stone-Weierstrass. Therefore it suffices to show that A(f) is constant on leaves of the stable foliation when *f* is *C*-Lipschitz for some C > 0 and square integrable.

For any sequence $\alpha_i \in \mathbb{R}$ converging to 0, the sequence $\frac{1}{n} \sum_{i=0}^{n-1} \alpha_i$ also converges to 0. Therefore, whenever $x \sim y$, one has

$$A(f)(x) - A(f)(y) = \lim_{n} \sum_{i=0}^{n-1} f(F^{i}(x)) - f(F^{i}(y)) = 0$$

because $\alpha_i = |f(F^i(x)) - f(F^i(y))| \leq Cd(F^i(x), F^i(y))$ converges to 0.

Stable and unstable foliations

DEFINITION: Let M be a metric space with a Borel measure and F: $M \longrightarrow M$ a homeomorphism preserving measure. The "unstable foliation" is a stable foliation for F^{-1} .

DEFINITION: The map F is called **pseudo-Anosov** if any leaf of stable foliation intersects any leaf of unstable foliation.

COROLLARY: A pseudo-Anosov map $F: M \rightarrow M$ is always ergodic.

Proof: F is ergodic if all F-invariant $f \in L^2(M)$ are constant. However, al such f are constant on leaves of stable foliation and leaves on unstable foliation and these leaves intersect.

EXAMPLE: (Anosov diffeomorphism)

Let $A : T^2 \longrightarrow T^2$ be a linear map of a torus defined by $A \in SL(2,\mathbb{Z})$, with real eigenvalues $\alpha > 1$ and $\beta \in]0, 1[$, The eigenspace corresponding to β gives a stable foliation, the eigenspace corresponding to α the unstable foliation, hence A is ergodic.

Arnold's cat map

DEFINITION: The Arnold's cat map is $A : T^2 \longrightarrow T^2$ defined by $A \in SL(2,\mathbb{Z})$,

The eigenvalues of A are roots of $\det(t \operatorname{Id} - A) = (t-2)(t-1) - 1 = t^2 - 3t - 1$. This is a quadratic equation with roots $\alpha_{\pm} = \frac{3 \pm \sqrt{5}}{2}$. On the vectors tangent to the eigenspace of α_{-} , the map A^n acts as $(\alpha_{-})^n$, hence the stable foliation is tangent to these vectors. Similarly, unstable foliation is tangent to the eigenspace of α_{+} .

