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Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian

space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise

orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure

of the subspace generated by the set {xα}.

THEOREM: Any Hilbert space has a basis, and all such bases are

countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls

with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the

second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.
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Real Hilbert spaces

DEFINITION: A Euclidean space is a vector space over R equipped with a
positive definite scalar product g.

DEFINITION: Real Hilbert space is a complete, infinite-dimensional Eu-
clidean space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure
of the subspace generated by the set {xα}.

THEOREM: Any real Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls
with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the
second countability axiom is not satisfied.

THEOREM: All real Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.
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Adjoint maps

EXERCISE: Let (H, g) be a Hilbert space. Show that the map x−→ g(x, ·)
defines an isomorphism H −→H∗.

DEFINITION: Let A : H −→H be a continuous linear endomorphism of a

Hilbert space (H, g). Then λ−→ λ(A(·)) map A∗ : H∗ −→H∗. Identifying

H and H∗ as above, we interpret A∗ as an endomorphism of H. It is called

adjoint endomorphism (Hermitian adjoint in Hermitian Hilbert spaces).

REMARK: The map A∗ satisfies g(x,A(y)) = g(A∗(x), y). This relation is

often taken as a definition of the adjoint map.

DEFINITION: An operator U : H −→H is orthogonal if g(x, y) = g(U(x), U(y))

for all x, y ∈ H.

CLAIM: An invertible operator U is orthogonal if and only if U∗ = U−1.

Proof: Indeed, orthogonality is equivalent to g(x, y) = g(U∗U(x), y), which is

equivalent to U∗U = Id because the form g(z, ·) is non-zero for non-zero z.
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Orthogonal maps and direct sum decompositions

LEMMA: Let U : H −→H be an invertible orthogonal map. Denote by HU

the kernel of 1 − U , that is, the space of U-invariant vectors, and let H1 be

the closure of the image of 1 − U . Then H = HU ⊕ H1 is an orthogonal

direct sum decomposition.

Proof: Let x ∈ HU . Then

(U∗ − 1)(x) = (U∗ − 1)U(x) = (U−1 − 1)U(x) = (1− U)x = 0.

This gives g(x, (U − 1)y) = g((U∗ − 1)x, y) = 0, hence x⊥H1. Conversely, any

vector x which is orthogonal to H1 satisfies 0 = g(x, (U−1)y) = g((U∗−1)x, y),

giving

0 = (U∗ − 1)(x) = (U∗ − 1)U(x) = (U−1 − 1)U(x) = (1− U)x.
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Von Neumann erodic theorem

Corollary 1: Let U : H −→H be an invertible orthogonal map, and Un :=
1
n

∑n−1
i=0 U

i(x). Then limnUn(x) = P (x), for all x ∈ H where P is orthogonal

projection to HU.

Proof: By the previous lemma, it suffices to show that limnUn = 0 on H1.

However, the vectors of form x = (1 − U)(y) are dense in H1, and for such

x we have Un(x) = Un(1 − U)(y) = 1−Un
n (y), and it converges to 0 because

‖Un‖ = 1.

THEOREM: Let (M,µ) be a measure space and T : M −→M a map pre-

serving the measure. Consider the space L2(M) of functions f : M −→ R with

f2 integrable, and let T ∗ : L2(M)−→ L2(M) map f to T ∗f . Then the series

Tn(f) := 1
n

∑n−1
i=0 (T ∗)i(f) converges in L2(M) to a T ∗-invariant function.

Proof: Corollary 1 implies that Tn(f) converges to P (f).
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The Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F :
M −→M a continuous map preserving measure. The “stable foliation” is
an equivalence relation on M , with x ∼ y when limi d(Fn(x), Fn(y)) = 0. The
“leaves” of stable foliation are the equivalence classes.

THEOREM: (Hopf Argument) Any measurable, F -invariant function is
constant on the leaves of stable foliation outside of a measure 0 set.

Proof: Let A(f) := limn
1
n

∑n−1
i=0 (F i)∗f be the map defined above. Since

A(f) = f for any F -invariant f , it suffices to prove that A(f) is constant on
leaves of the stable foliation only for f ∈ imA. The Lipschitz L2-integrable
functions are dense in L1(M) by Stone-Weierstrass. Therefore it suffices
to show that A(f) is constant on leaves of the stable foliation when f is
C-Lipschitz for some C > 0 and square integrable.

For any sequence αi ∈ R converging to 0, the sequence 1
n

∑n−1
i=0 αi also con-

verges to 0. Therefore, whenever x ∼ y, one has

A(f)(x)−A(f)(y) = lim
n

n−1∑
i=0

f(F i(x))− f(F i(y)) = 0

because αi = |f(F i(x))− f(F i(y))| 6 Cd(F i(x), F i(y)) converges to 0.
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Stable and unstable foliations

DEFINITION: Let M be a metric space with a Borel measure and F :

M −→M a homeomorphism preserving measure. The “unstable foliation”

is a stable foliation for F−1.

DEFINITION: The map F is called pseudo-Anosov if any leaf of stable

foliation intersects any leaf of unstable foliation.

COROLLARY: A pseudo-Anosov map F : M −→M is always ergodic.

Proof: F is ergodic if all F -invariant f ∈ L2(M) are constant. However,

al such f are constant on leaves of stable foliation and leaves on unstable

foliation and these leaves intersect.

EXAMPLE: (Anosov diffeomorphism)

Let A : T2 −→ T2 be a linear map of a torus defined by A ∈ SL(2,Z), with

real eigenvalues α > 1 and β ∈]0,1[, The eigenspace corresponding to β gives

a stable foliation, the eigenspace corresponding to α the unstable foliation,

hence A is ergodic.
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Arnold’s cat map

DEFINITION: The Arnold’s cat map is A : T2 −→ T2 defined by A ∈
SL(2,Z),

A =

[
2 1
1 1

]
.

The eigenvalues of A are roots of det(t Id−A) = (t−2)(t−1)−1 = t2−3t−1.

This is a quadratic equation with roots α± = 3±
√

5
2 . On the vectors tangent

to the eigenspace of α−, the map An acts as (α−)n, hence the stable foliation

is tangent to these vectors. Similarly, unstable foliation is tangent to the

eigenspace of α+.
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