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Teoria Ergódica Diferenciável
lecture 6: Hopf argument

Instituto Nacional de Matemática Pura e Aplicada
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Volume functions

Today I would repeat the content of the previous lecture, taking advantage

of the material we have covered in September assignments.

DEFINITION: Let C be the set of compact subsets in a topological space

M . A function λ : C−→ R>0 is

* Monotone, if λ(A) 6 λ(B) for A ⊂ B
* Additive, if λ(A

∐
B) = λ(A) + λ(B)

* Semiadditive, if λ(A ∪B) 6 λ(A) + λ(B)

If these assumptions are satisfied, λ is called volume function.

DEFINITION: Let λ be a volume on M . For any S ⊂ M , define inner

measure λ∗(S) := sup
C
λ(C), where supremum is taken over all compact C ⊂

S, and outer measure λ∗(S) := inf
U
λ∗(U), where infimum is taken over all

open U ⊃ S.

DEFINITION: A volume is called regular if λ∗(S) = λ(S) for any compact

subset S ⊂M .

2



Smooth ergodic theory, lecture 6 M. Verbitsky

Radon measures

DEFINITION: Radon measure. or regular measure on a locally compact

topological space M is a Borel measure µ which satisfies the following as-

sumptions.

1. µ is finite on all compact sets.

2. For any Borel set E, one has µ(E) = inf µ(U), where infimum is

taken over all open U containing E.

3. For any open set E, one has µ(E) = supµ(K), where infimum is

taken over all compact K contained in E.

THEOREM: Outer measure is always a Radon measure.

Proof: Assignment 6.
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Riesz representation theorem

DEFINITION: Uniform topology on functions is induced by the metric

d(f, g) = sup |f − g|.

Riesz representation theorem: Let M be a metrizable, locally compact

topological space, and C0
c (M)∗ the space of functionals continuous in uni-

form topology. Then Radon measures can be characterized as continu-

ous functionals µ ∈ C0
c (M)∗ which are non-negative on all non-negative

functions.

Proof: Clearly, all measures define such functionals. Conversely, let ρ ∈
C0
c (M)∗ be a functional which is non-negative on non-negative functions.

Given a compact set K ⊂M , denote by χK its characteristic function, that

is, a function which is equal 1 on K and 0 on M\K. Consider the number

λ(K) := ρ(f), where the infimum is taken over all functions f ∈ C0
c (M)

such that f > χK. This function is clearly subadditive and monotonous. It

is additive because for any two non-intersecting compact sets there exists

a continuous function taking 0 on one and 1 on another (prove it). The

corresponding outer measure µ satisfies ρ(f) =
∫
M fµ (prove it).
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Weak-∗ topology (reminder)

DEFINITION: Let M be a topological space, and C0
c (M) the space of con-

tinuous function with compact support. Any finite Borel measure µ defines a

functional C0
c (M)−→ R mapping f to

∫
M fµ. We say that a sequence {µi} of

measures converges in weak-∗ topology (or in measure topology) to µ if

lim
i

∫
M
fµi =

∫
M
fµ

for all f ∈ C0
c (M). The base of open sets of weak-∗ topology is given by

Uf,]a,b[ where ]a, b[⊂ R is an interval, and Uf,]a,b[ is the set of all measures µ

such that a <
∫
M fµ < b.
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Tychonoff topology (reminder)

DEFINITION: Let {Xα} be a family of topological spaces, parametrized by

α ∈ I. Product topology, or Tychonoff topology on the product
∏
αXα is

topology where the open sets are generated by unions and finite intersections

of π−1
a (U), where πa :

∏
αXα is a projection to the Xa-component, and U ⊂ Xa

is an open set.

REMARK: Tychonoff topology is also called topology of pointwise con-

vergence, because the points of
∏
αXα can be considered as maps from

the set of indices I to the corresponding Xα, and a sequence of such maps

converges if and only if it converges for each α ∈ I.

REMARK: Consider a finite measure as an element in the product of C0
c (M)

copies of R, that is, as a continuous map from C0
c (M) to R. Then the

weak-∗ topology is induced by the Tychonoff topology on this product.
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Space of measures and Tychonoff topology (reminder)

REMARK: (Tychonoff theorem)

A product of any number of compact spaces is compact.

THEOREM: Let M be a compact topological space, and P the space of

probability measures on M equipped with the measure topology. Then P is

compact.

Proof. Step 1: For any probability measure on M , and any f ∈ C0
c (M),

one has min(f) 6
∫
M fµ 6 max(f). Therefore, µ can be considered as an

element of the product
∏
f∈C0

c (M)[min(f),max(f)] of closed intervals indexed

by f ∈ C0
c (M), and Tychonoff topology on this product induces the

weak-∗ topology.

Step 2: A closed subset of a compact set is again compact, hence it suffices

to show that all limit points of P ⊂
∏
f∈C0

c (M)[min(f),max(f)] are proba-

bility measures. This is implied by Riesz representation theorem. The limit

measure µ satisfies µ(M) = 1 because the constant function f = 1 has com-

pact support, hence lim
∫
M µi =

∫
M µ whenever limi µi = µ. It is continuous

because µ(f) 6 ε for any function taking values in [0, ε].
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Fréchet spaces

DEFINITION: A seminorm on a vector space V is a function ν : V −→ R>0

satisfying

1. ν(λx) = |λ|ν(x) for each λ ∈ R and all x ∈ V

2. ν(x+ y) 6 ν(x) + ν(y).

DEFINITION: We say that topology on a vector space V is defined by

a family of seminorms {να} if the base of this topology is given by the finite

intersections of the sets

Bνα,ε(x) := {y ∈ V | να(x− y) < ε}

(”open balls with respect to the seminorm”). It is complete if each sequence

xi ∈ V which is Cauchy with respect to each of the seminorms converges.

DEFINITION: A Fréchet space is a Hausdorff second countable topological

vector space V with the topology defined by a countable family of seminorms,

complete with respect to this family of seminorms.
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Seminorms and weak-∗ topology

REMARK: Let M be a manifold and W be the subspace in functionals on

C0
c (M) generated by all Borel measures (”the space of signed measures”).

Recall that the Hahn decomposition is a decomposition of µ ∈ W as µ =

µ+ − µ−, where µ+, µ− are measures with non-intersecting support.

EXAMPLE: Then the weak-∗ topology is defined by a countable family

of seminorms. Indeed, we can choose a dense, countable family of functions

fi ∈ C0
c (M), and define the seminorms νfi on measures by νfi(µ) :=

∫
M fiµ

extending it to W by νfi(µ) =
∫
M fiµ+ +

∫
M fiµ−, where µ = µ+ − µ− is the

Hahn decomposition.
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Existence of invariant measures

Further on, we shall prove the following theorem

Theorem 1: Let K ⊂ V be a compact, convex subset of a topological vector

space with topology defined by a family of seminorms, and A : V −→ V a

continuous linear map which preserves K. Then there exists a point z ∈ K
such that A(z) = z.

Its proof is in the next slide.

COROLLARY: Let M be a compact topological space and f : M −→M a

continuous map. Then there exists an f-invariant probability measure

on M.

Proof: Take the compact space K ⊂ W of all probability measures, and let

A : K −→K map µ to f∗µ. Then A has a fixed point, as follows from Theorem

1.
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Linear maps on convex compact sets

Theorem 1: Let K ⊂ V be a compact, convex subset of a topological vector

space with topology defined by a family of seminorms, and A : V −→ V a

continuous linear map which preserves K. Then there exists a point z ∈ K
such that A(z) = z.

Proof: Consider the linear map An(x) := 1
n

∑n−1
i=0 A

n(x). Since it is an average

of points in K, one has An(x) ∈ K. Let z ∈ K be a limit point of the sequence

{An(x)} for some x ∈ K. Since

(1−A)An(x) =
(1−A)

(∑n−1
i=0 A

n
)

n
=

1−An

n
,

for each seminorm νi on V one has

ν(A(An(x))−An(x)) <
C

n
,

where

C := sup
x,y∈K

ν(x− y).

By continuity of ν, this gives ν(A(z)− z) < C
n for each n > 0, hence A(z) = z.
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Linear maps on convex compact sets: properties of the limit

Lemma 1: Let K ⊂ V be a compact, convex subset of a topological vector

space with topology defined by a family of seminorms, and A : V −→ V

a continuous linear map which preserves K. Consider the map An(x) :=
1
n

∑n−1
i=0 A

i(x), and let Map(K,K) be the space of maps from K to itself with

the Tychonoff topology. Then {An} has a subsequence converging to a linear

map B from K to itself. Consider B as a linear map from the space V ′ ⊂
V generated by K to itself. Then for two such limits B1 and B2, the

difference E := B1−B2 satisfies imE ⊂ V0, kerE ⊂ V0, where V0 = ker(1−
A) ∩ V ′.

Proof. Step 1: Consider the space Map(K,K) of maps from K to itself

with the product topology. By Tychonoff theorem, it is compact. The set of

linear maps is closed in Map(K,K) (prove it). Then the sequence {An ∈
Map(K,K)} has a limit point B : K −→K which is a linear map on K. Then

B defines a linear (possibly discontinuous) endomorphism of V ′.

Step 2: Since (1−A)An(x) = 1−An
n , one has (1−A)B = B(1−A) = 0. This

implies that imB ⊂ V0. Since B
∣∣∣V0

= A, we also have E
∣∣∣V0

= V0.

12



Smooth ergodic theory, lecture 6 M. Verbitsky

Measures with linear bound

Lemma 2 Let C > 0 be a constant, ν a measure on S, and KC,ν be the space

of measures µ on S which satisfy µ(U) 6 Cν(U). for all measurable sets U .

Then Kν is closed in weak-∗ topology.

Proof: KC,ν =
⋂
f∈C0

c (M)Kf , where Kf = {measures µ |
∫
S |f |µ 6 C

∫
S |f |ν.}
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Birkhoff-Khinchin Ergodic Theorem

THEOREM: (Birkhoff-Hinchin Ergodic Theorem) Let f : M −→M be a
continuous map on a compact topological space, and µ a probability measure.
Assume that µ = Φν, where f∗ν = ν, and |Φ| < C a bounded measurable func-
tion. Then the sequence µn := 1

n

∑n−1
i=0 (f∗)iµ converges to a probability

measure.

Proof. Step 1: The sequence µn := 1
n

∑n−1
i=0 (f∗)iµ has a limit point µ′ which is

absolutely continuous with respect to ν by Lemma 2. Moreover, the function
Ψ := µ′

ν is bounded by the same constant C. Since |µn − f∗µn| < |µn|−|f
n
∗ µn|

n ,
the limit function Ψ is f-invariant.

Step 2: Consider the map E : K −→ V0 of Lemma 1, where K is the space
of probability measures. Using the natural pairing f, g −→

∫
M fgµ, we embed

the space C0
c (M) to C0

c (M)∗. Then E can be interpreted as an f∗-invariant
V0-valued functional Z : C0

c (M)−→ V0, vanishing on all functions which have
measure 0 with respect to µ.

Composing Z with a linear functional κ, and applying Radon-Nikodym the-
orem, we obtain an integrable f∗-invariant function Θ ∈ L1(M) such that
κ(Z(Φµ)) =

∫
M ΘΦµ. Then Z(Θ) 6= 0, because Z(Θ) =

∫
M Θ2 > 0. This is

impossible, because E|V 0 = 0.
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Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F :

M −→M a continuous map preserving measure. The “stable foliation” is

an equivalence relation on M , with xỹ when limi d(Fn(x), Fn(y)) = 0. The

“leaves” of stable foliation are equivalence classes.

THEOREM: (Hopf Argument) Any measurable, F -invariant function is

constant on the leaves of stable foliation outside of a measure 0 set.

Proof: Let A(f) := limn
1
n

∑n−1
i=0 (F i)∗f be the map provided by Birkhoff-

Khinchin theorem. It suffices to prove that A(f) is constant only for the

functions in imA. Since Lipschitz functions are dense in L1-topology, it suf-

fices to show this only when f is C-Lipschitz for some C > 0.

For any sequence αi ∈ R converging to 0, the sequence 1
n

∑n−1
i=0 αi also con-

verges to 0. Therefore, whenever xỹ, one has

A(f)(x)−A(f)(y) = lim
n

n−1∑
i=0

f(F i(x))− f(F i(y)) = 0

because αi = |f(F i(x))− f(F i(y))| 6 Cd(F i(x), F i(y)) converges to 0.
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