Teoria Ergódica Diferenciável

lecture 6: Hopf argument

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, October 4, 2017

Volume functions

Today I would repeat the content of the previous lecture, taking advantage of the material we have covered in September assignments.

DEFINITION: Let C be the set of compact subsets in a topological space M. A function $\lambda : \mathbb{C} \longrightarrow \mathbb{R}^{\geq 0}$ is

- * Monotone, if $\lambda(A) \leq \lambda(B)$ for $A \subset B$
- * Additive, if $\lambda(A \coprod B) = \lambda(A) + \lambda(B)$
- * Semiadditive, if $\lambda(A \cup B) \leq \lambda(A) + \lambda(B)$

If these assumptions are satisfied, λ is called **volume function**.

DEFINITION: Let λ be a volume on M. For any $S \subset M$, define inner measure $\lambda_*(S) := \sup_C \lambda(C)$, where supremum is taken over all compact $C \subset S$, and outer measure $\lambda^*(S) := \inf_U \lambda_*(U)$, where infimum is taken over all open $U \supset S$.

DEFINITION: A volume is called **regular** if $\lambda^*(S) = \lambda(S)$ for any compact subset $S \subset M$.

Radon measures

DEFINITION: Radon measure. or **regular measure** on a locally compact topological space M is a Borel measure μ which satisfies the following assumptions.

1. μ is finite on all compact sets.

2. For any Borel set E, one has $\mu(E) = \inf \mu(U)$, where infimum is taken over all open U containing E.

3. For any open set E, one has $\mu(E) = \sup \mu(K)$, where infimum is taken over all compact K contained in E.

THEOREM: Outer measure is always a Radon measure.

Proof: Assignment 6. ■

Riesz representation theorem

DEFINITION: Uniform topology on functions is induced by the metric $d(f,g) = \sup |f - g|$.

Riesz representation theorem: Let M be a metrizable, locally compact topological space, and $C_c^0(M)^*$ the space of functionals continuous in uniform topology. Then Radon measures can be characterized as continuous functionals $\mu \in C_c^0(M)^*$ which are non-negative on all non-negative functions.

Proof: Clearly, all measures define such functionals. Conversely, let $\rho \in C_c^0(M)^*$ be a functional which is non-negative on non-negative functions. Given a compact set $K \subset M$, denote by χ_K its characteristic function, that is, a function which is equal 1 on K and 0 on $M \setminus K$. Consider the number $\lambda(K) := \rho(f)$, where the infimum is taken over all functions $f \in C_c^0(M)$ such that $f \ge \chi_K$. This function is clearly subadditive and monotonous. It is additive because for any two non-intersecting compact sets there exists a continuous function taking 0 on one and 1 on another (prove it).

Weak-* topology (reminder)

DEFINITION: Let M be a topological space, and $C_c^0(M)$ the space of continuous function with compact support. Any finite Borel measure μ defines a functional $C_c^0(M) \longrightarrow \mathbb{R}$ mapping f to $\int_M f\mu$. We say that a sequence $\{\mu_i\}$ of measures converges in weak-* topology (or in measure topology) to μ if

$$\lim_{i} \int_{M} f\mu_{i} = \int_{M} f\mu$$

for all $f \in C_c^0(M)$. The base of open sets of weak-* topology is given by $U_{f,]a,b[}$ where $]a,b[\subset \mathbb{R}$ is an interval, and $U_{f,]a,b[}$ is the set of all measures μ such that $a < \int_M f\mu < b$.

Tychonoff topology (reminder)

DEFINITION: Let $\{X_{\alpha}\}$ be a family of topological spaces, parametrized by $\alpha \in \mathcal{I}$. **Product topology**, or **Tychonoff topology** on the product $\prod_{\alpha} X_{\alpha}$ is topology where the open sets are generated by unions and finite intersections of $\pi_a^{-1}(U)$, where $\pi_a : \prod_{\alpha} X_{\alpha}$ is a projection to the X_a -component, and $U \subset X_a$ is an open set.

REMARK: Tychonoff topology is also called **topology of pointwise convergence**, because the points of $\prod_{\alpha} X_{\alpha}$ can be considered as maps from the set of indices \mathcal{I} to the corresponding X_{α} , and a sequence of such maps converges if and only if it converges for each $\alpha \in \mathcal{I}$.

REMARK: Consider a finite measure as an element in the product of $C_c^0(M)$ copies of \mathbb{R} , that is, as a continuous map from $C_c^0(M)$ to \mathbb{R} . Then the weak-* topology is induced by the Tychonoff topology on this product.

Space of measures and Tychonoff topology (reminder)

REMARK: (Tychonoff theorem) A product of any number of compact spaces is compact.

THEOREM: Let M be a compact topological space, and \mathcal{P} the space of probability measures on M equipped with the measure topology. Then \mathcal{P} is compact.

Proof. Step 1: For any probability measure on M, and any $f \in C_c^0(M)$, one has $\min(f) \leq \int_M f\mu \leq \max(f)$. Therefore, μ can be considered as an element of the product $\prod_{f \in C_c^0(M)} [\min(f), \max(f)]$ of closed intervals indexed by $f \in C_c^0(M)$, and Tychonoff topology on this product induces the weak-* topology.

Step 2: A closed subset of a compact set is again compact, hence it suffices to show that all limit points of $\mathcal{P} \subset \prod_{f \in C_c^0(M)} [\min(f), \max(f)]$ are probability measures. This is implied by Riesz representation theorem. The limit measure μ satisfies $\mu(M) = 1$ because the constant function f = 1 has compact support, hence $\lim \int_M \mu_i = \int_M \mu$ whenever $\lim_i \mu_i = \mu$. It is continuous because $\mu(f) \leq \varepsilon$ for any function taking values in $[0, \varepsilon]$.

Fréchet spaces

DEFINITION: A seminorm on a vector space V is a function ν : $V \longrightarrow \mathbb{R}^{\geq 0}$ satisfying

1. $\nu(\lambda x) = |\lambda|\nu(x)$ for each $\lambda \in \mathbb{R}$ and all $x \in V$

2. $\nu(x+y) \leq \nu(x) + \nu(y)$.

DEFINITION: We say that **topology on a vector space** V is **defined by a family of seminorms** $\{\nu_{\alpha}\}$ if the base of this topology is given by the finite intersections of the sets

$$B_{\nu_{\alpha},\varepsilon}(x) := \{ y \in V \mid \nu_{\alpha}(x-y) < \varepsilon \}$$

("open balls with respect to the seminorm"). It is **complete** if each sequence $x_i \in V$ which is Cauchy with respect to each of the seminorms converges.

DEFINITION: A **Fréchet space** is a Hausdorff second countable topological vector space V with the topology defined by a countable family of seminorms, complete with respect to this family of seminorms.

Seminorms and weak-* topology

REMARK: Let M be a manifold and W be the subspace in functionals on $C_c^0(M)$ generated by all Borel measures ("the space of signed measures"). Recall that **the Hahn decomposition** is a decomposition of $\mu \in W$ as $\mu = \mu_+ - \mu_-$, where μ_+, μ_- are measures with non-intersecting support.

EXAMPLE: Then the weak-* topology is defined by a countable family of seminorms. Indeed, we can choose a dense, countable family of functions $f_i \in C_c^0(M)$, and define the seminorms ν_{f_i} on measures by $\nu_{f_i}(\mu) := \int_M f_i \mu$ extending it to W by $\nu_{f_i}(\mu) = \int_M f_i \mu_+ + \int_M f_i \mu_-$, where $\mu = \mu_+ - \mu_-$ is the Hahn decomposition.

Existence of invariant measures

Further on, we shall prove the following theorem

Theorem 1: Let $K \subset V$ be a compact, convex subset of a topological vector space with topology defined by a family of seminorms, and $A : V \longrightarrow V$ a continuous linear map which preserves K. Then there exists a point $z \in K$ such that A(z) = z.

Its proof is in the next slide.

COROLLARY: Let M be a compact topological space and $f: M \longrightarrow M$ a continuous map. Then there exists an f-invariant probability measure on M.

Proof: Take the compact space $K \subset W$ of all probability measures, and let $A: K \longrightarrow K \mod \mu$ to $f_*\mu$. Then A has a fixed point, as follows from Theorem 1.

Linear maps on convex compact sets

Theorem 1: Let $K \subset V$ be a compact, convex subset of a topological vector space with topology defined by a family of seminorms, and $A : V \longrightarrow V$ a continuous linear map which preserves K. Then there exists a point $z \in K$ such that A(z) = z.

Proof: Consider the linear map $A_n(x) := \frac{1}{n} \sum_{i=0}^{n-1} A^n(x)$. Since it is an average of points in K, one has $A_n(x) \in K$. Let $z \in K$ be a limit point of the sequence $\{A_n(x)\}$ for some $x \in K$. Since

$$(1-A)A_n(x) = \frac{(1-A)\left(\sum_{i=0}^{n-1} A^n\right)}{n} = \frac{1-A^n}{n},$$

for each seminorm ν_i on V one has

$$\nu(A(A_n(x)) - A_n(x)) < \frac{C}{n},$$

where

$$C := \sup_{x,y \in K} \nu(x-y)$$

By continuity of ν , this gives $\nu(A(z) - z) < \frac{C}{n}$ for each n > 0, hence A(z) = z.

M. Verbitsky

Linear maps on convex compact sets: properties of the limit

Lemma 1: Let $K \subset V$ be a compact, convex subset of a topological vector space with topology defined by a family of seminorms, and $A : V \longrightarrow V$ a continuous linear map which preserves K. Consider the map $A_n(x) := \frac{1}{n} \sum_{i=0}^{n-1} A^i(x)$, and let Map(K, K) be the space of maps from K to itself with the Tychonoff topology. Then $\{A_n\}$ has a subsequence converging to a linear map B from K to itself. Consider B as a linear map from the space $V' \subset V$ generated by K to itself. Then for two such limits B_1 and B_2 , the difference $E := B_1 - B_2$ satisfies im $E \subset V_0$, ker $E \subset V_0$, where $V_0 = \ker(1 - A) \cap V'$.

Proof. Step 1: Consider the space Map(K, K) of maps from K to itself with the product topology. By Tychonoff theorem, it is compact. The set of linear maps is closed in Map(K, K) (prove it). Then the sequence $\{A_n \in Map(K, K)\}$ has a limit point $B : K \longrightarrow K$ which is a linear map on K. Then B defines a linear (possibly discontinuous) endomorphism of V'.

Step 2: Since $(1 - A)A_n(x) = \frac{1 - A^n}{n}$, one has (1 - A)B = B(1 - A) = 0. This implies that im $B \subset V_0$. Since $B|_{V_0} = A$, we also have $E|_{V_0} = V_0$.

Measures with linear bound

Lemma 2 Let C > 0 be a constant, ν a measure on S, and $K_{C,\nu}$ be the space of measures μ on S which satisfy $\mu(U) \leq C\nu(U)$. for all measurable sets U. **Then** K_{ν} is closed in weak-* topology.

Proof: $K_{C,\nu} = \bigcap_{f \in C^0_c(M)} K_f$, where $K_f = \{\text{measures } \mu \mid \int_S |f| \mu \leq C \int_S |f| \nu.\}$

Birkhoff-Khinchin Ergodic Theorem

THEOREM: (Birkhoff-Hinchin Ergodic Theorem) Let $f: M \to M$ be a continuous map on a compact topological space, and μ a probability measure. Assume that $\mu = \Phi \nu$, where $f_*\nu = \nu$, and $|\Phi| < C$ a bounded measurable function. Then the sequence $\mu_n := \frac{1}{n} \sum_{i=0}^{n-1} (f_*)^i \mu$ converges to a probability measure.

Proof. Step 1: The sequence $\mu_n := \frac{1}{n} \sum_{i=0}^{n-1} (f_*)^i \mu$ has a limit point μ' which is absolutely continuous with respect to ν by Lemma 2. Moreover, the function $\Psi := \frac{\mu'}{\nu}$ is bounded by the same constant *C*. Since $|\mu_n - f_*\mu_n| < \frac{|\mu_n| - |f_*^n\mu_n|}{n}$, **the limit function** Ψ is *f*-invariant.

Step 2: Consider the map $E: K \longrightarrow V_0$ of Lemma 1, where K is the space of probability measures. Using the natural pairing $f, g \longrightarrow \int_M fg\mu$, we embed the space $C_c^0(M)$ to $C_c^0(M)^*$. Then E can be interpreted as an f_* -invariant V_0 -valued functional $Z: C_c^0(M) \longrightarrow V_0$, vanishing on all functions which have measure 0 with respect to μ .

Composing Z with a linear functional κ , and applying Radon-Nikodym theorem, we obtain an integrable f_* -invariant function $\Theta \in L^1(M)$ such that $\kappa(Z(\Phi\mu)) = \int_M \Theta \Phi\mu$. Then $Z(\Theta) \neq 0$, because $Z(\Theta) = \int_M \Theta^2 > 0$. This is impossible, because $E|_{V0} = 0$.

Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F: $M \longrightarrow M$ a continuous map preserving measure. The "stable foliation" is an equivalence relation on M, with $x\tilde{y}$ when $\lim_{i} d(F^{n}(x), F^{n}(y)) = 0$. The "leaves" of stable foliation are equivalence classes.

THEOREM: (Hopf Argument) Any measurable, *F*-invariant function is constant on the leaves of stable foliation outside of a measure 0 set.

Proof: Let $A(f) := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} (F^i)^* f$ be the map provided by Birkhoff-Khinchin theorem. It suffices to prove that A(f) is constant only for the functions in im A. Since Lipschitz functions are dense in L^1 -topology, it suffices to show this only when f is C-Lipschitz for some C > 0.

For any sequence $\alpha_i \in \mathbb{R}$ converging to 0, the sequence $\frac{1}{n} \sum_{i=0}^{n-1} \alpha_i$ also converges to 0. Therefore, whenever $x\tilde{y}$, one has

$$A(f)(x) - A(f)(y) = \lim_{n} \sum_{i=0}^{n-1} f(F^{i}(x)) - f(F^{i}(y)) = 0$$

because $\alpha_i = |f(F^i(x)) - f(F^i(y))| \leq Cd(F^i(x), F^i(y))$ converges to 0.