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σ-algebras and measures (reminder)

DEFINITION: Let M be a set A σ-algebra of subsets of X is a Boolean

algebra A ⊂ 2X such that for any countable family A1, ..., An, ... ∈ A the union⋃∞
i=1Ai is also an element of A.

REMARK: We define the operation of addition on the set R ∪ {∞} in such

a way that x +∞ = ∞ and ∞+∞ = ∞. On finite numbers the addition is

defined as usually.

DEFINITION: A function µ : A−→ R ∪ {∞} is called finitely additive if for

all non-intersecting A,B ∈ U, µ(A
∐
B) = µ(A) + µ(B). The sign

∐
denotes

union of non-intersecting sets. µ is called σ-additive if µ(
∐∞
i=1Ai) =

∑
µ(Ai)

for any pairwise disjoint countable family of subsets Ai ∈ A.

DEFINITION: A measure in a σ-algebra A ⊂ 2X is a σ-additive function

µ : A−→ R ∪ {∞}.

EXAMPLE: Let X be a topological space. The Borel σ-algebra is a smallest

σ-algebra A ⊂ 2X containing all open subsets. Borel measure is a measure

on Borel σ-algebra.
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Measurable maps and measurable functions (reminder)

DEFINITION: Let X,Y be sets equipped with σ-algebras A ⊂ 2X and B ⊂
2Y . We say that a map f : X −→ Y is compatible with the σ-algebra, or

measurable, if f−1(B) ∈ A for all B ∈ B.

REMARK: This is similar to the definition of continuity. In fact, any con-

tinuous map of topological spaces is compatible with Borel σ-algebras.

DEFINITION: Let X be a space with σ-algebra A ⊂ 2X. A function f :

X −→ R is called measurable if f is compatible with the Borel σ-algebra on

R, that is, if the preimage of any Borel set A ⊂ R belongs to A.

DEFINITION: Let X,Y be sets equipped with σ-algebras A ⊂ 2X and B ⊂
2Y , f : X −→ Y a measurable map. Let µ be a measure on X. Consider the

function f∗µ mapping B ∈ B to µ(f−1(B)).

EXERCISE: Prove that f∗µ is a measure on Y .

DEFINITION: The measure f∗µ is called the pushforward measure, or

pushforward of µ.
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Ergodic measures (reminder)

REMARK: Let M,µ be a space with measure. We say that “property P

holds for almost all x ∈M” when property P holds for all x ∈M outside of
a measure 0 subset.

DEFINITION: Let Γ be a group acting on a measured space (M.µ) and
preserving its σ-algebra. We say that the Γ-action is ergodic if for each Γ-
invariant, measurable set U ⊂ M , either µ(U) = 0 or µ(M\U) = 0. In this
case µ is called an ergodic measure.

THEOREM: Let M be a second countable topological space, and µ a Borel
measure on M . Let Γ be a group acting on M by homeomorphisms. Suppose
that any non-empty open subset of M has positive measure, and action of Γ
is ergodic. Then for almost all x ∈M, the orbit Γ · x is dense in M.

THEOREM: Let (M,µ) be a space with finite measure, and Γ a group acting
on M and preserving the measure. Then the following are equivalent.

(a) The action of Γ is ergodic.

(b) For each integrable, Γ-invariant function f : M −→ R, f is constant
almost everywhere.
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Hilbert spaces

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian

space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise

orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure

of the subspace generated by the set {xα}.

THEOREM: Any Hilbert space has a basis, and all such bases are

countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls

with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the

second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.
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Fourier series

EXAMPLE: Let (M,µ) be a space with measure. Consider the space V

of measurable functions f : M −→ C such that
∫
M |f |2µ < ∞. For each

f, g ∈ V , the integral
∫
fgµ is well defined, by Cauchy inequality:

∫
|fg|µ <√∫

M |f |2µ
∫
M |g|2µ. This gives a Hermitian form on V Let L2(M) denote the

completion of V with respect to this metric. It is called the space of square-

integrable functions on M . Its elements are called L2-functions.

CLAIM: (”Fourier series”) Functions ek(t) = e2π
√
−1 kt, k ∈ Z on S1 = R/Z

form an orthonormal basis in the space L2(S1).

Proof: Orthogonality is clear from
∫
S1 e2π

√
−1 ktdt = 0 for all k 6= 0 (prove it).

To show that the space of Fourier polynomials
∑n
i=−n akek(t) is dense in the

space of continuous functions on circle, use the Stone-Weierstrass approxi-

mation theorem.
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Integrable functions on spaces with finite measure are square integrable

LEMMA: Let (M,µ) be a space with finite measure (that is,
∫
M µ < ∞).

Then any square integrable function is integrable.

Proof: Cauchy inequality gives∫
|f |µ <

√∫
M
|f |2µ

∫
M

1µ.
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Hilbert spaces and ergodicity

COROLLARY: Let (M,µ) be a space with finite measure and Γ a group
acting on M . Then the following are equivalent.

(a) The action of Γ is ergodic.

(b) For each square integrable, Γ-invariant function f : M −→ R, f is
constant almost everywhere.

(c) For each integrable, Γ-invariant function f : M −→ R, f is constant
almost everywhere.

Proof: (c) implies (b) by the previous lemma, (b) implies (a) because a
characteristic function of a measurable subset is square integrable, and (a)
⇒ (c) was already proven.

COROLLARY: Let α be an irrational number, and ϕα : S1 −→ S1 be a
rotation by πα. Then πα is ergodic.

Proof: Let ek(t) = e2π
√
−1 kt be the Fourier series basis. For any L2-function

f =
∑
k∈Z akek, one has ϕ∗α(f) =

∑
k∈Z e

√
−1 kπαakek. Since α is irrational,

e
√
−1 kπα 6= 1 for all k 6= 0, and the action of ϕα on L2(S1) has no non-

constant invariant L2-functions.
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Ergodic systems

DEFINITION: Let M be a space with measure, and Φ : M −→M a mea-

surable map. We say that a funcion f : M −→ R is Φ-invariant if Φ∗(f) = f

almost everywhere, that is, Φ ◦ f = f . We say that a subset U ⊂ M is

Φ-invariant, if Φ−1(U) = U up to measure 0 subset.

REMARK: A subset U ⊂M is Φ-invariant if and only if the corresponding

characteristic function χU is Φ-invariant.

DEFINITION: Dynamical system is a triple (M,µ,Φ), where (M,µ) is a

space with measure, and Φ : M −→M a measurable map.

DEFINITION: Let (M,µ,Φ) be a dynamical system. It is called ergodic

system if any Φ-invariant measurable subset has full measure or has zero

measure.
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The doubling map

THEOREM: Let (M,µ,Φ) be a dynamical system, with µ finite. Then the
following are equivalent.

(a) (M,µ,Φ) is ergodic.

(b) For each square integrable, Φ-invariant function f : M −→ R, f is
constant almost everywhere.

(c) For each integrable, Φ-invariant function f : M −→ R, f is constant
almost everywhere.

Proof: Same as above.

EXAMPLE: Let S1 = R/Z, and the doubling map D map α to 2α.

CLAIM: The doubling map defines an ergodic system on S1.

Proof: Let ek(t) = e2π
√
−1 kt be the Fourier series basis. For any L2-function

f =
∑
k∈Z akek, one has D∗(f) =

∑
k∈Z ake2k. Then the action of ϕα on L2(S1)

has no non-constant invariant L2-functions.
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Lebesque measure (reminder)

DEFINITION: Pseudometric on X is a function d : X ×X −→ R>0 which
is symmetric and satisfies the triangle inequality and d(x, x) = 0 for all x ∈ X.
In other words, pseudometric is a metric which can take 0 on distinct points.

EXERCISE: Let A ⊂ 2X be a Boolean algebra with positive, additive function
µ. Given U, V ∈ 2X, denote by U4V their symmetric difference, that is,
U4V := (U ∪ V )\(U ∩ V ). Prove that the function dµ(U, V ) := µ(U4V )
defines a pseudometric on A.

DEFINITION: Let A ⊂ 2X be a Boolean algebra with positive, additive
function µ. A set U ⊂ X has measure 0 if for each ε > 0, U can be covered
by a union of Ai ∈ A, that is, U ⊂

⋃∞
i=1Ai, with

∑∞
i=0 µ(Ai) < ε.

REMARK: Consider a completion of A with respect to the pseudometric
dµ. A limit of a Cauchy sequence {Ai} ⊂ A can be realized as an element of
2X; this realization is unique up to a set of measure 0. A set which can be
obtained this way is called a Lebesgue measurable set. Extending µ to the
metric completion of A by continuity, we obtain the Lebesgue measure on
the σ-algebra of Lebesgue measurable sets.

REMARK: This construction is also used for constructing Borel measures.
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Lebesque approximation theorem

THEOREM: (Lebesque approximation theorem)

Let M be a topological space, and A0 a Boolean algebra of Borel subsets

such that the corresponding σ-algebra A contains all Borel subsets. Consider

an additive, finite measure on A0 which continually extends to its completion

A. Then for each X ∈ A and each ε > 0 there exists X0 ∈ A0 such that

µ(X4X0) < ε.

Proof: X is a limit of a Cauchy sequence from A0.

EXERCISE: Let C be a cube in Rn, and A0 be an algebra generated by

parallelepipeds. Prove that for each each T ∈ A0, there exists an open

subset T ′ ∈ A0 such that µ(T4T ′) = 0.

COROLLARY: For each measurable subset X ⊂ C, and each ε > 0, there

exists an open subset X0 ∈ A0 such that µ(X4X0) < ε.
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Lebesque approximation theorem for Bernoulli space

DEFINITION: Let P be a finite set, PZ the product of Z copies of P ,

Σ ⊂ Z a finite subset, and πΣ : PZ −→ P |Σ| projection to the corresponding

components. Tychonoff topology, or product topology is topology where

the base of open sets are given by cylindrical sets CR := π−1
Σ (R), where

R ⊂ P |Σ| is any subset.

REMARK: For Bernoulli space, a complement to an cylindrical set is

again an open set, and the cylindrical sets form a Boolean algebra.

DEFINITION: Bernoulli measure on PZ is a measure µ such that µ(CR) :=
|R|
|P ||Σ|

.

THEOREM: (Lebesque approximation theorem)

For each Lebesgue measurable set S ⊂ PZ and ε > 0, there exists a cylindrical

subset CR = π−1
Σ (R) such that µ(CR4X) < ε.

Proof: The σ-algebra of Lebesgue measurable sets is by definition a comple-

tion of the Boolean algebra of cylindrical sets.
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Bernoulli shifts are ergodic

We represent an element of Bernulli space PZ by a sequence a−n, a−n+1, ..., a0, a1, ...,

with ai ∈ P .

DEFINITION: Bernoulli shift maps a sequence a−n, a−n+1, ..., a0, a1, ... to

the sequence b−n, b−n+1, ..., b0, b1, ..., bi = ai−1.

CLAIM: The corresponding Z-action is ergodic on the Bernoulli space.

Proof. Step 1: Let CR = π−1
Σ (R) and CR′ = π−1

Σ′ (R
′) be two open sets,

where Σ ⊂ Z and Σ′ ⊂ Z don’t intersect. Then µ(CR ∩ CR′) = µ(CR)µ(CR′).

Indeed,

µ(CR ∩ CR′) =
|R||R′|
|P ||Σ|+|Σ′|

.

This gives µ(CR4CR′) = µ(CR) + µ(CR′)− µ(CR)µ(CR′).
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Bernoulli shifts are ergodic (2)

CLAIM: The Bernoulli shift action is ergodic on the Bernoulli space.
Proof. Step 1: Let CR and CR′ be two cylindrical sets, where Σ ⊂ Z and
Σ′ ⊂ Z don’t intersect. Then µ(CR4CR′) = µ(CR) + µ(CR′)− 2µ(CR)µ(CR′).

Step 2: Let U ⊂ PZ be a shift-invariant subset with ε < µ(U) < 1 − ε, and
CR ⊂ PZ an open subset satisfying µ(CR4U) < δ, for a given δ < 1

4ε. Such CR
exists by Lebesgue approximation theorem. Replacing U by its complement if
necessary, we may assume that ε < µ(U) 6 1/2, giving ε−δ < µ(CR) < 1/2+δ.

Step 3: Denote by Φ a sufficiently big power of the Bernoulli shift such that
µ(CR ∩Φ(CR)) = µ(CR)2 (Step 1). Then

µ(CR4Φ(CR)) = 2µ(CR)− 2µ(CR)2 = 2µ(CR)(1− µ(CR)).

Since ε− δ < µ(CR) < 1/2 + δ, this gives

µ(CR4Φ(CR)) = 2µ(CR)− 2µ(CR)2 > 2(ε− δ)(1/2− δ) >
7

16
ε.

(for the last inequality use δ < 1
8ε). Since U is Φ-invariant, we have

7

16
ε < µ(CR4Φ(CR)) 6 µ(CR4U) + µ(Φ(CR)4Φ(U)) < 2δ <

1

4
ε,

giving a contradiction.
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Rotation and doubling are ergodic via Lebesgue approximation

EXERCISE: Prove that irrational rotations of a circle are ergodic using

the Lebesgue approximation theorem.

EXERCISE: Prove that the doubling map is ergodic using the Lebesgue

approximation theorem.
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