Teoria Ergódica Diferenciável, assignment 7: Lie groups

Rules: This is a home assignment for October 18. Please bring me the solutions no later than October 25.

Exercise 7.1. Consider the group O(1,1) of automorphisms of \mathbb{R}^2 preserving the scalar product of signature (1,1). Prove that O(1,1) has at least 4 connected components.

Exercise 7.2. Let G be a topological group (a group which is a topological space with all group operations continuous). Prove that the connected component of G containing unit is a subgroup of G.

Exercise 7.3. Prove that the connected component of the unit of the group O(1,1) is a group which is isomorphic to \mathbb{R} .

Exercise 7.4. Prove that the equation $x^2 - 2y^2 = 1$ has infinitely many integer solutions.

Hint. Use the previous exercise

Exercise 7.5. Prove that the group SO(n) is connected.

Exercise 7.6. Let $\gamma \in O(p,q)$ be any automorphism of a vector space preserving a scalar product of signature (p,q). Prove that $|\det \gamma| = 1$.

Exercise 7.7. Construct an element $x \in SO(1,2)$ which is not diagonalizable over \mathbb{C} . Here $SO(1,2) \subset GL(3,\mathbb{R})$ is a group of matrices with det = 1 preserving a scalar product of signature (1,2).

Exercise 7.8. Let $\Psi : G \longrightarrow G_1$ be a homomorphism of connected Lie groups of the same dimension with $d\Psi$ surjective. Prove that Ψ is surjective, and its kernel is a discrete subgroup of G.